汽车工程 ›› 2024, Vol. 46 ›› Issue (1): 170-178.doi: 10.19562/j.chinasae.qcgc.2024.01.018
收稿日期:
2023-06-02
修回日期:
2023-06-28
出版日期:
2024-01-25
发布日期:
2024-01-23
通讯作者:
余海燕
E-mail:yuhaiyan@tongji.edu.cn
基金资助:
Ze Gao1,Zunkang Chu1,Jiasheng Shi2,Fu Lin2,Weixiong Rao2,Haiyan Yu1()
Received:
2023-06-02
Revised:
2023-06-28
Online:
2024-01-25
Published:
2024-01-23
Contact:
Haiyan Yu
E-mail:yuhaiyan@tongji.edu.cn
摘要:
有限元分析作为一种重要的计算机辅助工程技术,在汽车零部件开发中起着极为重要的作用,但是在分析复杂问题时耗时长,影响开发周期。为此,本文提出了一种以有限元仿真提供样本数据、以图网络技术建立有限元输入与输出间的映射关系的神经网络方法,将该图网络方法应用于座椅骨架总成的应力场预测。该预测方法中采用图节点和图边模拟了有限元模型中节点间的连接关系,由此表达有限元模型中单元之间的拓扑关系,并将预测结果与有限元仿真结果进行了对比。结果表明该方法能准确预测座椅骨架总成的最大应力及其出现的位置,对应力分布一致性均有较好的预测能力,且计算速度比相应有限元求解度快3个数量级以上。
高泽, 楚遵康, 石稼晟, 林滏, 饶卫雄, 余海燕. 基于图网络的汽车零部件应力场快速预测方法研究[J]. 汽车工程, 2024, 46(1): 170-178.
Ze Gao, Zunkang Chu, Jiasheng Shi, Fu Lin, Weixiong Rao, Haiyan Yu. Research on Fast Prediction Method of Stress Field of Automotive Parts Based on Graph Network[J]. Automotive Engineering, 2024, 46(1): 170-178.
表6
CAE仿真与神经网络座椅最大应力误差结果"
编号 | FEM仿真 应力/MPa | 预测应力/MPa | 绝对误差/MPa | 相对 误差/% |
---|---|---|---|---|
1 | 437.799 7 | 431.977 45 | 5.822 3 | 1.329 9 |
2 | 330.791 7 | 331.800 72 | 1.009 0 | 0.305 0 |
3 | 383.638 9 | 385.096 37 | 1.457 5 | 0.379 9 |
4 | 476.107 9 | 477.871 03 | 1.763 1 | 0.370 3 |
5 | 464.164 3 | 470.417 97 | 6.253 7 | 1.347 3 |
6 | 411.926 5 | 413.097 35 | 1.170 9 | 0.284 2 |
7 | 355.065 1 | 354.502 30 | 0.562 8 | 0.158 5 |
8 | 369.533 5 | 369.539 15 | 0.005 7 | 0.001 5 |
9 | 393.871 8 | 394.924 13 | 1.052 3 | 0.267 2 |
10 | 412.051 8 | 413.097 44 | 1.045 6 | 0.253 8 |
平均 | 403.495 1 | 404.232 39 | 2.014 3 | 0.469 8 |
1 | JIN J. The finite element method in electromagnetics[J]. Journal of the Japan Society of Applied Electromagnetics, 2002. |
2 | 卢荡,杨文豪,吴海东,等.轮胎力学特性仿真高精度有限元建模方法研究[J]. 汽车工程, 2022, 44(10): 1556-1562,1590. |
LU D, YANG W H, WU H D, et al. Research on high-accuracy finite element modeling method for tire mechanics characteristics simulation[J]. Automotive Engineering, 2022, 44(10): 1556-1562,1590. | |
3 | ZHAO M, ZHANG D Z, LIU F, et al. Mechanical and energy absorption characteristics of additively manufactured functionally graded sheet lattice structures with minimal surfaces[J]. International Journal of Mechanical Sciences, 2020,167:105262. |
4 | SENER A S. Fatigue life resolution of the steering wheel tie rod of a LCV with FEA[J]. Mechanika, 2017,23(5):622-629. |
5 | 刘长钊,张铁,宋健,等.纯电动汽车电驱动系统耦合动力学研究[J]. 汽车工程, 2022, 44(12):1896-1909. |
LIU C Z, ZHANG T, SONG J, et al. Study on coupling dynamics of electric drive system of pure electric vehicle[J]. Automotive Engineering, 2022, 44(12):1896-1909. | |
6 | BLACK N, NAJAFI A R. Learning finite element convergence with the multi-fidelity graph neural network[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 397:115120. |
7 | OISHI A, YAGAWA G. Computational mechanics enhanced by deep learning[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 327: 327-351. |
8 | DESHPANDE S, LENGIEWICZ J, BORDAS S. Probabilistic deep learning for real-time large deformation simulations[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 398: 115307. |
9 | LIANG L, LIU M, MARTIN C, et al. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis[J]. Journal of The Royal Society Interface, 2018, 15(138): 20170844. |
10 | NIE Z, JIANG H, KARA L B. Stress field prediction in cantilevered structures using convolutional neural networks[J]. Journal of Computing and Information Science in Engineering, 2020, 20(1): 011002. |
11 | ZHOU H, XU Q, NIE Z, et al. A study on using image-based machine learning methods to develop surrogate models of stamp forming simulations[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2022, 144(2): 1087-1357. |
12 | FENG Y T, FENG Y F, YOU H X, et al. MeshNet: mesh neural network for 3D shape representation[C]. AAAI Conference on Artificial Intelligence, 2019: 8279-8286. |
13 | 张绍伟,朱大炜,翟光照.基于深度学习的座椅抗挥鞭伤性能预测[J]. 汽车工程, 2022, 44(10):1600-1608. |
ZHANG S W, ZHU D W, ZHAI G Z. Prediction on seat’s anti-whiplash-injury performance based on deep learning[J]. Automotive Engineering, 2022, 44(10):1600-1608. | |
14 | ATWOOD J, TOWSLEY D, LEE D D, et al. Diffusion-convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2016, 29. |
15 | BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks[J]. Statistics, 2018: 1467-5463. |
16 | SANCHEZ-GONZALEZ A, GODWIN J, PFAFF T, et al. Learning to simulate complex physics with graph networks [C]. International Conference on Machine Learning. PMLR, 2020: 8459-8468. |
17 | 汽车座椅、座椅固定装置及头枕强度要求和试验方法: GB 15083—2019 [S]. 国家市场监督管理总局, 中国国家标准化管理委员会, 2019. |
Strength requirement and test method of automobile seats, their anchorages and any head restraints: GB 15083—2019 [S]. State Administration for Market Regulation, Standardization Administration, 2019. | |
18 | MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2):239-245. |
19 | MOUSTAPHA M, MARELLI S, SUDRET B. Active learning for structural reliability: survey, general framework and benchmark[J]. Structural Safety, 2022, 96: 102174. |
20 | SHEN Y. Loss functions for binary classification and class probability estimation[M]. University of Pennsylvania, 2005. |
[1] | 刘卫国,项志宇,刘锐,李国栋,王子旭. 基于深度学习的端到端车辆运动规划方法研究[J]. 汽车工程, 2023, 45(8): 1343-1352. |
[2] | 赵嘉豪,齐志权,齐智峰,王皓,何磊. 基于轮胎特征点的并行大型车辆朝向角计算[J]. 汽车工程, 2023, 45(6): 1031-1039. |
[3] | 陈妍妍,王海,蔡英凤,陈龙,李祎承. 基于检测的高效自动驾驶实例分割方法[J]. 汽车工程, 2023, 45(4): 541-550. |
[4] | 兰凤崇,陈继开,陈吉清,蒋心平,李子涵,潘威. 实车数据驱动的锂电池剩余使用寿命预测方法研究[J]. 汽车工程, 2023, 45(2): 175-182. |
[5] | 李琳辉,张鑫亮,付一帆,连静,马家旭. 基于TC-YOLOv7算法的可见光与红外后融合检测研究[J]. 汽车工程, 2023, 45(12): 2280-2290. |
[6] | 张小俊,奚敬哲,史延雷,袁安录. 面向路侧视角目标检测的轻量级YOLOv7-R算法[J]. 汽车工程, 2023, 45(10): 1833-1844. |
[7] | 胡杰,李源洁,耿號,耿黄政,郭雄,易红卫. 基于深度学习的汽车故障知识图谱构建[J]. 汽车工程, 2023, 45(1): 52-60. |
[8] | 胡杰,徐博远,熊宗权,昌敏杰,郭迪,谢礼浩. 基于多尺度掩码分类域自适应网络的跨域目标检测算法[J]. 汽车工程, 2022, 44(9): 1327-1338. |
[9] | 毕贵红,谢旭,蔡子龙,骆钊,陈臣鹏,赵鑫. 动态条件下基于深度学习的锂电池容量估计[J]. 汽车工程, 2022, 44(6): 868-878. |
[10] | 王大方,杜京东,曹江,张梅,赵刚. 面向自动驾驶数据生成的风格迁移网络研究[J]. 汽车工程, 2022, 44(5): 684-690. |
[11] | 韩勇,林丽雅,何勇,潘迪,蔡鸿瑜,彭倩,冯浩. 电动两轮车骑车人紧急避让姿态对损伤风险的影响研究[J]. 汽车工程, 2022, 44(5): 764-770. |
[12] | 王童,杜轶群,陈轶嵩,韩日美. 基于结构轻量化的城市客车车身生命周期评价[J]. 汽车工程, 2022, 44(5): 778-788. |
[13] | 郭景华,何智飞,罗禹贡,李克强. 人机混驾环境下基于深度学习的车辆切入轨迹预测[J]. 汽车工程, 2022, 44(2): 153-160. |
[14] | 戴志腾,汪怡平,苏楚奇,王庆洋. 基于MATV的车底高速气流引起的车内噪声计算[J]. 汽车工程, 2022, 44(2): 290-298. |
[15] | 蒋渊德,朱冰,赵祥模,赵健,郑兵兵. 面向自动驾驶汽车测试的交通车辆交互过程建模[J]. 汽车工程, 2022, 44(12): 1825-1833. |
|