汽车工程 ›› 2023, Vol. 45 ›› Issue (1): 52-60.doi: 10.19562/j.chinasae.qcgc.2023.01.006
所属专题: 智能网联汽车技术专题-感知&HMI&测评2023年
胡杰1,2,3(),李源洁1,2,3,耿號1,2,3,耿黄政1,2,3,郭雄4,易红卫4
收稿日期:
2022-08-08
出版日期:
2023-01-25
发布日期:
2023-01-18
通讯作者:
胡杰
E-mail:auto_hj@163.com
Jie Hu1,2,3(),Yuanjie Li1,2,3,Hao Geng1,2,3,Huangzheng Geng1,2,3,Xiong Guo4,Hongwei Yi4
Received:
2022-08-08
Online:
2023-01-25
Published:
2023-01-18
Contact:
Jie Hu
E-mail:auto_hj@163.com
摘要:
本文将知识图谱引入汽车故障诊断领域,以某公司的售后业务数据为来源,根据文本特点,设计了一种知识图谱构建流程:在传统构建流程的基础上,加入文本预分类和实体重组流程。基于DPCNN模型的文本预分类用于处理目标字段存在信息冗余的问题;基于BERT-BiLSTM-MUL-CRF模型的实体抽取与基于语法规则的实体重组的组合形式可以有效解决文本中的嵌套实体问题和非连续实体问题;采用结合术语相似度和结构相似度的方法完成知识融合;最后,选用Neo4j图数据库进行存储,完成汽车故障知识图谱的构建。
胡杰,李源洁,耿號,耿黄政,郭雄,易红卫. 基于深度学习的汽车故障知识图谱构建[J]. 汽车工程, 2023, 45(1): 52-60.
Jie Hu,Yuanjie Li,Hao Geng,Huangzheng Geng,Xiong Guo,Hongwei Yi. Construction of Vehicle Fault Knowledge Graph Based on Deep Learning[J]. Automotive Engineering, 2023, 45(1): 52-60.
表3
基于语法规则的实体匹配算法"
Algorithm 1 | 基于语法规则的实体匹配 |
---|---|
Input: | 故障部位实体、失效形式实体在原文本中的索引列表L1;失效形式实体索引列表L2 |
Output: | 故障现象实体索引列表L3 |
1: | L3,stack//初始化列表L3和栈stack |
2: | for i ∈L1 do |
3: | if i ∈L2 then//判断是否为失效形式实体 |
4: | if stack== null then |
5: | stack?i //将失效形式实体索引i存入故障现象实体索引列表L3 |
6: | else |
7: | for j ∈ stack do |
8: | stack.pop(j)//将栈顶元素j弹出 |
9: | L3?[i,j]//将故障部位与失效形式组合,存放到L3中 |
10: | end for |
11: | end if |
12: | else |
13: | stack?i //将元素i压入栈中 |
14: | end if |
15: | end for |
16: | return L3//输出结果 |
1 | 徐增林, 盛泳潘, 贺丽荣 ,等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589-606. |
XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques[J]. Journal of the University of Electronic Science and Technology of China, 2016, 45(4): 589-606. | |
2 | MECKEL S, ZENKERT J, WEBER C, et al. Optimized automotive fault-diagnosis based on knowledge extraction from web resources[C]. 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2019: 1261-1264. |
3 | 陈曦. 基于领域知识图谱的柴油发动机故障诊断研究[D]. 哈尔滨:哈尔滨工业大学, 2021. |
CHEN X. Research on diesel engine fault diagnosis based on domain knowledge graph[D]. Harbin:Harbin Institute of Technology, 2021. | |
4 | 伍建辉. 基于第三方云平台的故障知识服务技术研究与系统实现[D]. 成都:西南交通大学, 2020. |
WU J H. Research and implementation of fault knowledge service technology based on third-party cloud platform[D].Chengdu: Southwest Jiaotong University, 2020. | |
5 | 赵祥龙. 基于第三方云平台的车辆故障知识图谱构建[D].成都:西南交通大学, 2019. |
ZHAO X L. Construction of vehicle fault knowledge graph based on third party cloud platform[D]. Chengdu: Southwest Jiaotong University, 2019. | |
6 | 刘峤,李杨,段宏,等.知识图谱构建技术综述[J].计算机研究与发展,2016,53(3):582-600. |
LIU Q, LI Y, DUAN H, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582-600. | |
7 | 冀振燕,孔德焱,刘伟,等.基于深度学习的命名实体识别研究[J].计算机集成制造系统,2022,28(6):1603-1615. |
JI Z Y, KONG D Y, LIU W, et al. Named entity recognition based on deep learning[J]. Computer Integrated Manufacturing System, 2022, 28(6): 1603-1615. | |
8 | 杨秀璋,彭国军,李子川,等.基于Bert和BiLSTM-CRF的APT攻击实体识别及对齐研究[J].通信学报,2022,43(6):58-70. |
YANG X Z, PENG G J, LI Z C, el al. Research on entity recognition and alignment of APT attack based on Bert and BiLSTM-CRF[J]. Journal on Communications, 2022, 43(6): 58-70. | |
9 | 张靖宜,贺光辉,代洲,等.融入BERT的企业年报命名实体识别方法[J].上海交通大学学报,2021,55(2):117-123. |
ZHANG J Y, HE G H, DAI Z, et al. Named entity recognition of enterprise annual report integrated with BERT[J]. Journal of Shanghai Jiaotong University, 2021, 55(2): 117-123. | |
10 | 储德平,万波,李红,等.基于ELMO-CNN-BiLSTM-CRF模型的地质实体识别[J].地球科学,2021,46(8):3039-3048. |
CHU D P, WAN B, LI H, et al. Geological entity recognition based on ELMO-CNN-BiLSTM-CRF model[J]. Earth Science, 2021, 46(8): 3039-3048. | |
11 | 钟诗胜,陈曦,赵明航,等.引入词集级注意力机制的中文命名实体识别方法[J].吉林大学学报(工学版),2022,52(5):1098-1105. |
ZHONG S S, CHEN X, ZHAO M H, et al. Incorporating word-set attention into Chinese named entity recognition method[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(5): 1098-1105. | |
12 | WU G, TANG G, WANG Z, et al. An attention-based BiLSTM-CRF model for Chinese clinic named entity recognition[J]. IEEE Access, 2019, 7: 113942-113949. |
13 | JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 2017: 562-570. |
14 | KIM Yoon. Convolutional neural networks for sentence classification[C]. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 2014: 1746-1751. |
15 | KATIYAR A, CARDIE C. Nested named entity recognition revisited[C]. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 2018, 1: 861-871. |
16 | STRAKOVÁ J, STRAKA M, HAJIČ J. Neural architectures for nested NER through linearization[C]. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2019: 5326-5331. |
17 | SHIBUYA T, HOVY E. Nested named entity recognition via second-best sequence learning and decoding[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 605-620. |
18 | LI X, FENG J, MENG Y, et al. A unified MRC framework for named entity recognition[C]. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2020: 5849-5859. |
19 | WANG Y, YU B, ZHU H, et al. Discontinuous named entity recognition as maximal clique discovery[C]. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational Linguistics, 2021: 764-774. |
20 | DAI X, KARIMI S, HACHEY B, et al. An effective transition-based model for discontinuous NER[C]. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2020: 5860-5870. |
21 | 田玲, 张谨川, 张晋豪, 等. 知识图谱综述——表示、构建、推理与知识超图理论[J]. 计算机应用, 2021, 41(8): 2161-2186. |
TIAN L, ZHANG J C, ZHANG J H, et al. Knowledge graph survey:representation,construction,reasoning and knowledge hypergraph theory[J]. Journal of Computer Applications, 2021, 41(8): 2161-2186. | |
22 | CONNEAU A, SCHWENK H, BARRAULT L, et al. Very deep convolutional networks for text classification[C]. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. Association for Computational Linguistics, 2017: 1107-1116. |
23 | STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions[C]. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2017: 2670-2680. |
24 | ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 2018: 1554-1564. |
25 | GUI T, MA R, ZHANG Q, et al. CNN-Based Chinese NER withlexicon rethinking[C]. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence Main track. Morgan Kaufmann, 2019: 4982-4988. |
[1] | 胡杰, 卿海华, 魏敏, 耿黄政, 张潇, 陈林. 基于多维关联规则的车辆故障码解耦方法研究[J]. 汽车工程, 2024, 46(1): 161-169. |
[2] | 高泽, 楚遵康, 石稼晟, 林滏, 饶卫雄, 余海燕. 基于图网络的汽车零部件应力场快速预测方法研究[J]. 汽车工程, 2024, 46(1): 170-178. |
[3] | 刘卫国,项志宇,刘锐,李国栋,王子旭. 基于深度学习的端到端车辆运动规划方法研究[J]. 汽车工程, 2023, 45(8): 1343-1352. |
[4] | 赵嘉豪,齐志权,齐智峰,王皓,何磊. 基于轮胎特征点的并行大型车辆朝向角计算[J]. 汽车工程, 2023, 45(6): 1031-1039. |
[5] | 陈妍妍,王海,蔡英凤,陈龙,李祎承. 基于检测的高效自动驾驶实例分割方法[J]. 汽车工程, 2023, 45(4): 541-550. |
[6] | 兰凤崇,陈继开,陈吉清,蒋心平,李子涵,潘威. 实车数据驱动的锂电池剩余使用寿命预测方法研究[J]. 汽车工程, 2023, 45(2): 175-182. |
[7] | 李琳辉,张鑫亮,付一帆,连静,马家旭. 基于TC-YOLOv7算法的可见光与红外后融合检测研究[J]. 汽车工程, 2023, 45(12): 2280-2290. |
[8] | 张小俊,奚敬哲,史延雷,袁安录. 面向路侧视角目标检测的轻量级YOLOv7-R算法[J]. 汽车工程, 2023, 45(10): 1833-1844. |
[9] | 胡杰,徐博远,熊宗权,昌敏杰,郭迪,谢礼浩. 基于多尺度掩码分类域自适应网络的跨域目标检测算法[J]. 汽车工程, 2022, 44(9): 1327-1338. |
[10] | 毕贵红,谢旭,蔡子龙,骆钊,陈臣鹏,赵鑫. 动态条件下基于深度学习的锂电池容量估计[J]. 汽车工程, 2022, 44(6): 868-878. |
[11] | 王大方,杜京东,曹江,张梅,赵刚. 面向自动驾驶数据生成的风格迁移网络研究[J]. 汽车工程, 2022, 44(5): 684-690. |
[12] | 郭景华,何智飞,罗禹贡,李克强. 人机混驾环境下基于深度学习的车辆切入轨迹预测[J]. 汽车工程, 2022, 44(2): 153-160. |
[13] | 蒋渊德,朱冰,赵祥模,赵健,郑兵兵. 面向自动驾驶汽车测试的交通车辆交互过程建模[J]. 汽车工程, 2022, 44(12): 1825-1833. |
[14] | 高振海,温文昊,唐明弘,张建,陈国迎. 基于混合神经网络的汽车运动状态估计[J]. 汽车工程, 2022, 44(10): 1527-1536. |
[15] | 张绍伟,朱大炜,翟光照. 基于深度学习的座椅抗挥鞭伤性能预测[J]. 汽车工程, 2022, 44(10): 1600-1608. |
|