1 |
REDMON J, FARHADI A. Yolov3: An incremental improveme-nt[J].arXiv preprint arXiv:,2018.
|
2 |
REN S, HE K, GIRSHICK R, et al. Faster r-cnn: towards re-al-time object detection with region proposal networks[J].Advances in Neural Information Processing Systems,2015,28.
|
3 |
邱锡鹏.《神经网络与深度学习》[J].中文信息学报, 2020(7):1.
|
4 |
GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].Journal of Machine Learning Research, 2016,17(59):1-35.
|
5 |
LONG M,ZHU H,WANG J,et al.Unsupervised domain adaptati-on with residual transfer networks[C]. Proc. of the Neural Information Processing Systems,2016.
|
6 |
TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial discriminative domain adaptation[C]. Proc. of the IEEE Conference on Computer Vision Pattern Recognition,2017.
|
7 |
TZENG E,HOFFMAN J,ZHANG N,et al.Deep domain confusion: maximizing for domain invariance[EB/OL].arXiv:1412.3474,2014.1,2.
|
8 |
SAITO K,USHIKU Y,HARADA T,et al.Adversarial dropout regularization.[C]. Proc. of the International Conference and Learning Representations,2018.
|
9 |
LIU M Y,BREUEL T,KAUTZ J.Unsupervised image-to-image translation networks. [C]. Proc. of the Neural Information Processing Systems,2017.
|
10 |
HOFFMAN J,TZENG E,PARK T,et al.Cycada: cycle-consistent adversarial domain adaptation[C].Proc. of the International Conference and Machine Learning,2018.1.
|
11 |
CHEN C Q,XIE W P,HUANG W B,et al.Progressive feature alignment for unsupervised domain adaptation[C]. Proc. of the IEEE Conference on Computer Vision Pattern Recognition,2019:627–636.
|
12 |
GANIN Y,LEMPITSKY V.Unsupervised domain adaptation by backpropagation[C].Proc. of the International Conference and Machine Learning,2015:1180–1189.
|
13 |
LONG M S,CAO Z J,WANG J M,et al.Conditional adversarial domain adaptation[C].Proc. of the Neural Information Processing Systems,2018:1640–1650.
|
14 |
SHU R,HUNG H B,NARUI H,et al. A dirt approach to unsup-ervised domain adaptation[C].Proc. of the International Conference and Learning Rrepresentations,2018.
|
15 |
TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial discriminative domain adaptation[C]. Proc. of the IEEE Conference on Computer Vision Pattern Recognition,2017.
|
16 |
XIE S A,ZHENG Z B,CHEN L,et al.Learning semantic represe-ntations for unsupervised domain adaptation[C].Proc. of the International Conference and Machine Learning,2018:627–636.
|
17 |
BEN-DAVID S,BLITZER J,CRAMMER K,et al.A theory of learning from different domains[J].Machine Learning, 2010,79(1-2):151-175.
|
18 |
BEN-DAVID S,BLITZER J,CRAMMER K,et al.Analysis of representations for domain adaptation[C].Proc. of the Neural Inf-ormation Processing Systems,2007.1,2.
|
19 |
CHEN Y,LI W,SAKARIDIS C,et al. Domain adaptive Faster R-CNN for object detection in the wild[C].Proc. of the IEEE Conference on Computer Vision Pattern Recognition,2018:3339-3348.
|
20 |
ZHU X,PANG J,YANG C,et al,Adapting object detectors via selective cross-domain alignment[C].Proc. of the IEEE Conference on Computer Vision Pattern Recognition,2019:687-696.
|
21 |
LI Y J, DAI X, MA C Y, et al. Cross-domain object detection via adaptive selftraining[J]. arXiv preprint arXiv:, 2021.
|
22 |
FUJII K, KERA H, KAWAMOTO K. Adversarially trained object detector for unsupervised domain adaptation[J]. arXiv preprint arXiv:, 2021.
|
23 |
ZHUANG C, HAN X, HUANG W, et al. iFAN: image-instance full alignment networks for adaptive object detection[C].Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(7): 13122-13129.
|
24 |
REDKO I, MORVANT E, HABRARD A, et al. A survey on domain adaptation theory[J]. arXiv preprint arXiv:, 2020.
|
25 |
SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition.[C].Proc. of the Intern-ational Conference and Learning Rrepresentations,2015.
|
26 |
SAITO K,USHIKU Y,HARADA T,et al,Strong-weak distribution alignment for adaptive object detection[C]. Proc. of the IEEE Conference on Computer Vision Pattern Recognition,2019:6956-6965.
|
27 |
LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense obj-ect detection [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,PP(99):2999-3007.
|
28 |
ZHANG H,TIAN Y,WANG K,et al,Synthetic-to-real domain adaptation for object instance segmentation[C]. Proc. of the 2019 International Joint Conference on Neural Netwo-rks,2019:1-7.
|
29 |
KIM T,JEONG M,KIM S,et al.Diversify andmatch: a domain adaptive representation learning paradigm for object detection[C].Proc. of the IEEE Conference on Computer Vision Pattern Recognition,2019:12456–12465.
|
30 |
HE Z,ZHANG L.Domain adaptive object detection via asymmetric tri-way Faster-RCNN[C]. ECCV 2020: 309–324.
|
31 |
WU A, LIU R, HAN Y, et al. Vector-decomposed disentanglement for domain-invariant object detection[C] .Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 9342-9351.
|
32 |
CHEN H Y, WANG P H, LIU C H, et al. Complement objective training[J]. arXiv preprint arXiv:, 2019.
|