汽车工程 ›› 2022, Vol. 44 ›› Issue (4): 482-494.doi: 10.19562/j.chinasae.qcgc.2022.04.004
所属专题: 新能源汽车技术-动力电池&燃料电池2022年
吴晓刚1,齐明山1,杜玖玉2(),Shchurov N. I.3,Shtang A. A.3
收稿日期:
2021-11-08
修回日期:
2021-12-06
出版日期:
2022-04-25
发布日期:
2022-04-22
通讯作者:
杜玖玉
E-mail:dujiuyu@tsinghua.edu.cn
基金资助:
Xiaogang Wu1,Mingshan Qi1,Jiuyu Du2(),N. I. Shchurov3,A. A. Shtang3
Received:
2021-11-08
Revised:
2021-12-06
Online:
2022-04-25
Published:
2022-04-22
Contact:
Jiuyu Du
E-mail:dujiuyu@tsinghua.edu.cn
摘要:
针对锂离子电池组在不同充电倍率下最高温度和单体温度均匀性的要求,在构建动力电池热模型的基础上,以抑制电池组内最高温度和最大温差为目标,仿真分析了液冷板布置位置、流道设计和冷板出入口位置等因素对电池组温度的影响规律。仿真结果表明,本文所设计的冷却系统,在电池组以2C倍率充电时,最高温度可控制在35.5 ℃,温差不超过5 ℃。
吴晓刚,齐明山,杜玖玉,Shchurov N. I.,Shtang A. A.. 不同充电倍率下锂离子电池组冷却系统结构设计[J]. 汽车工程, 2022, 44(4): 482-494.
Xiaogang Wu,Mingshan Qi,Jiuyu Du,N. I. Shchurov,A. A. Shtang. Structure Design of Lithium-ion Battery Cooling System at Different Charging Rates[J]. Automotive Engineering, 2022, 44(4): 482-494.
1 | LIU J W, LI H, LI W Y, et al. Thermal characteristics of power battery pack with liquid-based thermal management[J]. Applied Thermal Engineering, 2020, 164: 114421. |
2 | ZHANG G S, CAO L, GE S H, et al. In situ measurement of radial temperature distributions in cylindrical Li[J]. Journal of The Electrochemical Society, 2014, 161(10): A1499. |
3 | AN K, BARAI P, SMITH K, et al. Probing the thermal implications in mechanical degradation of lithium[J]. Journal of The Electrochemical Society, 2014, 161(6): A1058-A1070. |
4 | KEYSER M, PESARAN A, LI Q B, et al. Enabling fast charging-battery thermal considerations[J]. Journal of Power Sources, 2017, 367: 228-236 |
5 | 张明轩, 冯旭宁, 欧阳明高, 等. 三元锂离子动力电池针刺热失控实验与建模[J].汽车工程, 2015, 37(7): 743-750,756. |
ZHANG M X, FENG X N, OUYANG M G, et al. Experiments and modeling of nail penetration thermal runaway in a ncm li-ion power battery[J]. Automotive Engineering, 2015, 37(7): 743-750,756. | |
6 | LU M, ZHANG X, JI J, et al. Research progress on power battery cooling technology for electric vehicles[J]. Journal of Energy Storage, 2020, 27(Feb.):101155.1-101155.16. |
7 | XIA B, LIU Y, HUANG R, et al. Thermal analysis and improvements of the power battery pack with liquid cooling for electric vehicles[J]. Energies, 2019, 12(16):3045. |
8 | 申明, 高青, 王炎, 等. 电动汽车电池热管理系统设计与分析[J]. 浙江大学学报(工学版), 2019, 53(7): 1398-1430. |
SHENG M, GAO Q, WANG Y, et al. Design and analysis of battery thermal management system for electric vehicle[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(7): 1398-1430. | |
9 | WORWOOD D, KELLNER Q, WOJTALA M, et al. A new approach to the internal thermal management of cylindrical battery cells for automotive applications[J]. Journal of Power Sources,2017, 346: 151-166. |
10 | BANDHAUER T M, GARIMELLA S. Passive, internal thermal management system for batteries using microscale liquid-vapor phase change[J]. Applied Thermal Engineering, 2013, 61(2): 756-769. |
11 | DENG T, ZHANG G D, YAN R. Study on thermal management of rectangular Li-ion battery with serpentine-channel cold plate[J]. International Journal of Heat and Mass Transfer, 2018, 125: 143-152. |
12 | PATIL M S, SEO J H, PANCHAL S, et al. Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119728. |
13 | ZHANG T S, GAO Q, WANG G H, et al. Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process[J]. Applied Thermal Engineering, 2017, 116: 655-662. |
14 | HALES A, MARZOOK M W, DIAZ L B, et al. The cell cooling coefficient: a standard to define heat rejection from lithium[J]. Journal of The Electrochemical Society, 2019, 166(12): A2383. |
15 | 杨莹莹, 魏学哲, 刘耀锋, 等. 车用锂离子电池交流加热的研究[J]. 汽车工程, 2016, 38(7): 901-908. |
YANG Y Y, WEI X Z, LIU Y F, et al. A research on the AC heating of automotive lithium-ion battery[J]. Automotive Engineering, 2016, 38(7): 901-908. | |
16 | SHENG L, SU L, ZHANG H, et al. An improved calorimetric method for characterizations of the specific heat and the heat generation rate in a prismatic lithium ion battery cell[J]. Energy Conversion and Management, Elsevier, 2019, 180(August 2018): 724-732. |
17 | SAW L H, SOMASUNDARAM K, YE Y, et al. Electro-thermal analysis of lithium iron phosphate battery for electric vehicles[J]. Journal of Power Sources, 2014, 249: 231-238. |
18 | LIN C, WANG F, FAN B, et al. Comparative study on the heat generation behavior of lithium-ion batteries with different cathode materials using accelerating rate calorimetry[J]. Energy Procedia, 2017, 142: 3369-3374. |
19 | LIU G, OUYANG M G, LU L, et al. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(2): 1001-1010. |
20 | CHEN S C, WAN C C, WANG Y Y. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140(1): 111-124. |
21 | WANG K, GAO F, ZHU Y, et al. Internal resistance and heat generation of soft package Li4Ti5O12 battery during charge and discharge[J]. Energy, 2018, 149: 364-374. |
22 | ZHANG J, WU B, LI Z, et al. Simultaneous estimation of thermal parameters for large-format laminated lithium-ion batteries[J]. Journal of Power Sources, 2014, 259: 106-116. |
23 | HU X, JIANG J, CAO D, et al. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling[J]. IEEE Transactions on Industrial Electronics, IEEE, 2016, 63(4): 2645-2656. |
24 | Johnson Matthey Battery Systems. Our guide to batteries[R]. 2012. |
25 | WEMER D, LOGES A, BECKER D J, et al. Thermal conductivity of Li-ion batteries and their electrode configurations - a novel combination of modelling and experimental approach[J]. Journal of Power Sources, 2017, 364: 72-83. |
26 | CHENG X, TANG Y, WANG S. Thermophysical parameter measurements for lithium-ion batteries: a review[J]. Journal of Mechanical Engineering, 2019, 55(14): 140-150. |
27 | 郑海, 续彦芳, 刘汉涛, 等. 基于液体介质的锂离子动力电池热管理系统实验分析[J]. 储能科学与技术, 2020, 9(3): 1-7. |
ZHENG H, XU Y F, LIU H T, et al. Experimental analysis of thermal management system of lithium ion power battery based on liquid medium[J]. Energy Storage Science and Technology, 2020, 9(3): 1-7. | |
28 | FORGEZ C, DO D V, FRIEDRICH G, et al. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery[J]. Journal of Power Sources, 2010, 195(9): 2961-2968. |
29 | SHENG L, SU L, ZHANG H, et al. An improved calorimetric method for characterizations of the specific heat and the heat generation rate in a prismatic lithium ion battery cell[J]. Energy Conversion and Management, Elsevier, 2019, 180(August 2018): 724-732. |
30 | PATIL M S, SEO J H, PANCHAL S, et al. Numerical study on sensitivity analysis of factors influencing liquid cooling with double cold‐plate for lithium‐ion pouch cell[J]. International Journal of Energy Research, 2020, 45(2): 2533-2559. |
31 | JARRETT A, KIM I Y. Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of Power Sources,2011, 196(23): 10359-10368. |
[1] | 熊萌,张栋,尤国建,孙添飞,盛凯,魏学哲. 电动汽车无线充电高效高利用率磁芯的多目标优化设计[J]. 汽车工程, 2023, 45(9): 1740-1752. |
[2] | 郭文超,杨林,邓忠伟,李济霖,范志先. 云端数据驱动的锂电池故障分级预警研究[J]. 汽车工程, 2023, 45(9): 1677-1687. |
[3] | 吴忠强,张长兴. 考虑配电网负荷的电动汽车分布式充电控制[J]. 汽车工程, 2023, 45(4): 598-608. |
[4] | 张健豪,高兴奇,张莉. 基于容量增量曲线与充电容量差的电池组微短路诊断方法[J]. 汽车工程, 2023, 45(2): 191-198. |
[5] | 段志勇,马菁. 锂电池热管-液冷板式冷却结构多目标优化[J]. 汽车工程, 2023, 45(11): 2047-2057. |
[6] | 彭宇明,袁明晓,敬卓鑫,张永林,黄港. 汇流排产热影响下的电池模组冷却系统改进设计[J]. 汽车工程, 2022, 44(6): 859-867. |
[7] | 陈光,魏晨阳,李晓宇,景国玺. 基于梁单元简化模型的锂电池组碰撞安全临界条件的判定[J]. 汽车工程, 2022, 44(5): 722-729. |
[8] | 陈宇,吴晓刚,杜玖玉,孙金磊. 计及出租车充电行为的微电网能量管理研究[J]. 汽车工程, 2022, 44(4): 525-534. |
[9] | 莫崇相,吴坚,祁宏钟. 怠速充电工况下的电池SOC平衡控制[J]. 汽车工程, 2021, 43(3): 387-396. |
[10] | 常润泽,郑斌,冯旭宁,徐成善,王淮斌,陈立铎,王有镗. 隔热层对锂电池模组热失控蔓延特性影响的实验研究[J]. 汽车工程, 2021, 43(10): 1448-1456. |
[11] | 刘志孟,陶成轩,王丽芳,张玉旺,李树凡. 基于LCC/N磁集成补偿网络的强耦合无线充电系统研究[J]. 汽车工程, 2021, 43(10): 1528-1535. |
[12] | 靳博文, 乔慧敏, 潘天红, 陈山. 基于内阻功率消耗的锂电池SOC估计*[J]. 汽车工程, 2020, 42(8): 1008-1015. |
[13] | 李志杰, 陈吉清, 兰凤崇, 杨威. 车用锂电池PP隔膜机械失效导致内部微短路的机理研究*[J]. 汽车工程, 2020, 42(4): 454-461. |
[14] | 王宏朝, 单希壮, 杨志刚. 矩阵风扇冷却系统模糊控制的研究*[J]. 汽车工程, 2020, 42(3): 345-352. |
[15] | 王永胜, 罗禹贡, 古谚谌, 陈锐, 齐蕴龙, 江发潮. 面向自动充电的自主泊车精准调节策略*[J]. 汽车工程, 2020, 42(12): 1701-1709. |
|