1 |
PAN Y, KONG X D, YUAN Y B, et al. Detecting the foreign matter defect in lithium-ion batteries based on battery pilot manufacturing line data analyses[J]. Energy, 2023, 262: 125502.
|
2 |
HU X S, ZHANG K, LIU K L, et al. Advanced fault diagnosis for lithium-ion battery systems: a review of fault mechanisms, fault features, and diagnosis procedures[J]. IEEE Industrial Electronics Magazine, 2020, 14(3): 65-91.
|
3 |
XIONG R, SUN W Z, YU Q Q, et al. Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles[J]. Applied Energy, 2020, 279: 115855.
|
4 |
潘凤文, 麻斌, 高莹, 等. 奇偶空间法用于电动车锂离子电池传感器故障诊断[J]. 汽车工程, 2019, 41(7): 831-838.
|
|
PAN F W, MA B, GAO Y, et al. Parity space approach for fault diagnosis of lithium-ion battery sensor for electric vehicles[J]. Automotive Engineering, 2019, 41(7): 831-838.
|
5 |
苏伟, 钟国彬, 沈佳妮, 等. 锂离子电池故障诊断技术进展[J]. 储能科学与技术, 2019, 8(2): 225-236.
|
|
SU W, ZHONG G B, SHEN J N, et al. The progress in fault diagnosis techniques for lithium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(2): 225-236.
|
6 |
QIU Y S, DONG T, LIN D, et al. Fault diagnosis for lithium-ion battery energy storage systems based on local outlier factor[J]. Journal of Energy Storage, 2022, 55: 105470.
|
7 |
SHANG Y L, LU G P, KANG Y Z, et al. A multi-fault diagnosis method based on modified sample entropy for lithium-ion battery strings[J]. Journal of Power Sources, 2020, 446: 227275.
|
8 |
LIN T T, CHEN Z Q, ZHOU S Y. Voltage-correlation based multi-fault diagnosis of lithium-ion battery packs considering inconsistency[J]. Journal of Cleaner Production, 2022, 336: 130358.
|
9 |
LI K, ZHOU P, LU Y F, et al. Battery life estimation based on cloud data for electric vehicles[J]. Journal of Power Sources, 2020, 468: 228192.
|
10 |
ZHAO Y, LIU P, WANG Z P, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Appled Energy, 2017, 207: 354-362.
|
11 |
JIANG L L, DENG Z W, TANG X L, et al. Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data[J]. Energy, 2021, 234: 121266.
|
12 |
FAN Z, XUAN X Z, HU W M. Fault diagnosis method for lithium-ion batteries in electric vehicles using generalized dimensionless indicator and local outlier factor[J]. Journal of Energy Storage, 2022, 52: 104963.
|
13 |
JIANG J C, LI T Y, CHANG C, et al. Fault diagnosis method for lithium-ion batteries in electric vehicles based on isolated forest algorithm[J]. Journal of Energy Storage, 2022, 50: 104177.
|
14 |
SUN Z Y, WANG Z P, LIU P, et al. An online data-driven fault diagnosis and thermal runaway early warning for electric vehicle batteries[J]. IEEE Transactions on Power Electronics, 2022, 37(10): 12636-12646.
|
15 |
张健豪, 高兴奇, 张莉. 基于容量增量曲线与充电容量差的电池组微短路诊断方法[J]. 汽车工程, 2023, 45(2): 191-230.
|
|
ZHANG J H, GAO X Q,ZHANG L. Micro short circuit diagnosis method of battery pack based on capacity increment curve and charge capacity difference [J]. Automotive Engineering, 2023, 45(2): 191-230.
|
16 |
ZHENG Y J, LUO Q, CUI Y F, et al. Fault identification and quantitative diagnosis method for series-connected lithium-ion battery packs based on capacity estimation[J]. IEEE Transactions on Industrial Electronics, 2021, 69(3): 3059-3067.
|
17 |
ZHANG Z D, KONG X D, ZHENG Y J, et al. Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters[J]. Energy, 2019, 166: 1013-1024.
|
18 |
YANG F F, WANG D, XU F, et al. Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model[J]. Journal of Power Sources, 2020, 476: 228654.
|
19 |
ZHANG X Y, HONG J C, Xu X M. Fault diagnosis of real-scenario battery systems based on modified entropy algorithms in electric vehicles[J]. Journal of Energy Storage, 2023, 63: 107079.
|
20 |
YAO L, WANG Z P, MA J. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles[J]. Journal of Power Sources, 2015, 293: 548-561.
|
21 |
FENG X N, XU C S, HE X M, et al. A graphical model for evaluating the status of series-connected lithium-ion battery pack[J]. International Journal Energy Research, 2019, 43(2): 749-766.
|
22 |
韩雪冰. 车用锂离子电池机理模型与状态估计研究[D]. 北京: 清华大学, 2014.
|
|
HAN X B. Study of li-ion battery mechanism model and state estimation for electric vehicles[D]. Beijing: Tsinghua University, 2014.
|
23 |
贾俊, 胡晓松, 邓忠伟, 等. 数据驱动的锂离子电池健康状态综合评分及异常电池筛选[J]. 机械工程学报, 2021, 57(14): 141-159.
|
|
JIA Jun, HU Xiaosong, DENG Zhongwei, et al. Data-driven comprehensive evaluation of lithium-ion battery state of health and abnormal battery screening [J]. Journal of Mechanical Engineering, 2021, 57(14):141-159.
|
24 |
ZHANG Y, ZHOU Z K, KANG Y Z, et al. A quick screening approach based on fuzzy C-means algorithm for the second usage of retired lithium-ion batteries[J]. IEEE Transactions on Transportation Electrification, 2020, 7(2): 474-484.
|
25 |
SULZER V, MOHTAT P, AITIO A, et al. The challenge and opportunity of battery lifetime prediction from field data[J]. Joule, 2021, 5(8): 1934-1955.
|