汽车工程 ›› 2023, Vol. 45 ›› Issue (9): 1740-1752.doi: 10.19562/j.chinasae.qcgc.2023.ep.008
所属专题: 新能源汽车技术-动力电池&燃料电池2023年
熊萌1,2,张栋1(),尤国建1,孙添飞1,盛凯1,魏学哲2
收稿日期:
2022-12-29
修回日期:
2023-02-23
出版日期:
2023-09-25
发布日期:
2023-09-23
通讯作者:
张栋
E-mail:zhangdong@caeri.com.cn
基金资助:
Meng Xiong1,2,Dong Zhang1(),Guojian You1,Tianfei Sun1,Kai Sheng1,Xuezhe Wei2
Received:
2022-12-29
Revised:
2023-02-23
Online:
2023-09-25
Published:
2023-09-23
Contact:
Dong Zhang
E-mail:zhangdong@caeri.com.cn
摘要:
基于电动汽车无线充电的非对称DD线圈与LCC-SP拓扑,优化设计了一种新型磁芯结构,以解决发射端磁芯的非均匀磁通所导致的磁芯高磁损耗与低利用率问题。首先,针对参考线圈组建立了其等效电路模型与等效磁路模型,分别为磁芯损耗的剥离计算与磁芯结构的排布设计提供理论支撑。同时,提出磁芯磁通均匀性的评价指标CV(B),并建立了其与磁芯损耗及磁芯体积的定量关系,为磁芯优化提供了优化方向及优化边界。然后,基于线圈组等效模型提出了新型发射端磁芯结构,并对其关键结构参数进行敏感性分析,以期减小优化变量复杂度。最后,以最大耦合系数与最小均匀系数作为优化目标,采用COMSOL与Matlab联合仿真完成了基于NSGA-II多目标优化算法的新型磁芯结构优化。结果表明,优化后磁芯利用率及效率得到改善,优化磁芯体积仅占原参考磁芯的60%,线圈传输效率提升至98.117%,磁芯损耗减小约10 W,证明了所提优化方法的有效性。
熊萌,张栋,尤国建,孙添飞,盛凯,魏学哲. 电动汽车无线充电高效高利用率磁芯的多目标优化设计[J]. 汽车工程, 2023, 45(9): 1740-1752.
Meng Xiong,Dong Zhang,Guojian You,Tianfei Sun,Kai Sheng,Xuezhe Wei. Multi-objective Optimization Design of High Efficiency and High Utilization Magnetic Core of Wireless Charging of Electric Vehicles[J]. Automotive Engineering, 2023, 45(9): 1740-1752.
1 | 未倩倩, 赵凌霄, 黄炘, 等. 浅析电动汽车无线充电技术现状及发展趋势[J]. 汽车电器, 2019(6): 18. |
WEI Q Q, ZHAO L X, HUANG X, et al. Development status and trend analysis of wireless charging for electric vehicles[J]. Electric Parts, 2019(6): 18. | |
2 | ZHANG Z, PANG H, GEORGIADIS A, et al. Wireless power transfer—an overview[J]. IEEE Transactions on Industrial Electronics, 2018, 66(2):1044. |
3 | 郭尧, 朱春波, 宋凯, 等. 平板磁芯磁耦合谐振式无线电能传输技术[J]. 哈尔滨工业大学学报, 2014, 46(5): 23. |
GUO Y, ZHU C B, SONG K, et al. Flat core coupled resonant wireless power transfer technology[J]. Journal of Harbin Institute of Technology, 2014, 46(5): 23. | |
4 | 黄辉, 黄学良, 谭林林,等. 基于磁场谐振耦合的无线电力传输发射及接收装置的研究[J]. 电工电能新技术, 2011, 30(1): 32. |
HUANG H, HUANG X L, TAN L L, et al. Research on wireless power transmission and receiving device based on magnetic resonance coupling[J]. Advanced Technology of Electrical Engineering and Energy, 2011, 30(1): 32. | |
5 | 振勇, 王春芳, 李聃. 自动导引车无线充电系统中发射线圈优化设计[J]. 电源学报, 2020, 18(2): 172. |
ZHEN Y, WANG C F, LI D. Optimization design of transmitting coil for wireless charging system in automated guided vehicle[J]. Journal of Power Supply, 2020, 18(2): 172. | |
6 | 马兵兵, 彭月明, 李文强. 智能网络汽车发展中的无线技术研究[J]. 内燃机与配件, 2019(24): 210. |
MA B B, PENG Y M, LI W Q. Research on wireless technology in the development of intelligent network automobile[J]. Internal Combustion Engine & Parts, 2019(24): 210. | |
7 | FANG L, CHEN K, YE J, et al. Research on the overall efficiency optimization of the bidirectional wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2019. |
8 | MOHAMED A A S, BERZOY A, MOHAMMAD O. Magnetic design considerations of bidirectional inductive wireless power transfer system for EV applications[J]. IEEE Transactions on Magnetics, 2016, 53(6): 1. |
9 | WANG S, DORRELL D G. Loss analysis of circular wireless EV charging coupler[J]. IEEE Transactions on Magnetics, 2014, 50(11):1. |
10 | JAMES M, ROBERT S. Electric field breakdown in wireless power transfer systems due to ferrite dielectric polarizability[C]. 2016 IEEE Wireless Power Transfer Conference. Aveiro: IEEE, 2016: 1-4. |
11 | ZHANG J, LIU Y, DONG S, et al. Wireless power transfer based on the structure of plane-shaped cores[C]. IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer. Montréal: IEEE, 2018: 1-5. |
12 | CULLITY B D, GRAHAM C D. Soft magnetic materials[M]. Introduction to Magnetic Materials, Second Edition. United States: John Wiley & Sons, Inc, 2008. |
13 | SHIN J, SHIN S, KIM Y, et al. Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2013, 61(3):1179. |
14 | STRAUCH L, PAVLIN M, BREGAR V B. Optimization, design, and modeling of ferrite core geometry for inductive wireless power transfer[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 49(1): 145. |
15 | 刘志珍,曾浩,陈红星,等. 电动汽车无线充电系统磁芯结构的设计及优化[J]. 电机与控制学报, 2018, 22(1): 8. |
LIU Z Z, ZENG H, CHEN H X, et al. Design and optimization of core structure of wireless charging system for electric vehicle[J]. Electric Machines and Control, 2018, 22(1): 8. | |
16 | 孙跃,谭若兮,唐春森,等. 一种应用于电动汽车的新型耦合机构优化设计[J]. 西南交通大学学报, 2018, 53(5): 1078. |
SUN Y, TAN R X, TANG C S, et al. An optimized design of a new coupling mechanism for electric vehicles[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 1078. | |
17 | MOHAMMAD M, CHOI S, ISLAM M Z, et al. Core design and optimization for better misalignment tolerance and higher range of wireless charging of PHEV[J]. IEEE Transactions on Transportation Electrification, 2017, 3(2): 1. |
18 | CHOI, SU Y, WOO Y, et al. Asymmetric coil sets for wireless stationary EV chargers with large lateral tolerance by dominant field analysis[J]. IEEE Transactions on Power Electronics, 2014, 12(29): 139. |
19 | 孙凯东. 电动汽车无线充电DD型线圈设计参数优化[J]. 科技创新导报, 2019, 16(28): 113. |
SUN K D. Optimization of design parameters of DD coil for electric vehicle wireless charging[J]. Science and Technology Innovation Herald, 2019, 16(28): 113. | |
20 | MCLEAN J, FOLTZ H, SUTTON R. Higher-order multipoles in the electromagnetic field produced by a wireless power transfer system employing DD polarized couplers[C]. IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity, 2018: 477-482. |
21 | LUO Z, WEI X, PEARCE M G S, et al. Multiobjective optimization of inductive power transfer double-D pads for electric vehicles [J]. IEEE Transactions on Power Electronics, 2021, 36(5): 5135. |
22 | SAE. Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology [M]. SAE J2954 TIR. 2017. |
23 | XIONG M, DAI H, LI Q, et al. Design of the LCC-SP topology with a current doubler for 11-kW wireless charging system of electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2021, 4(7): 1. |
24 | MOHAMMAD M, HAQUE M S, CHOI S. A litz-wire based passive shield design to limit EMF emission from wireless charging system[C]. 2018 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2018. |
25 | MOHAMMAD M, CHOI S, ELBULUK M E. Loss minimization design of ferrite core in a DD-coil-based high-power wireless charging system for electrical vehicle application [J]. IEEE Transactions on Transportation Electrification, 2019, 5(4): 957. |
26 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182. |
[1] | 邹渊,孙文景,张旭东,温雅,曹万科,张兆龙. 面向时间敏感网络的车载以太网网络架构多目标优化[J]. 汽车工程, 2023, 45(5): 746-758. |
[2] | 段志勇,马菁. 锂电池热管-液冷板式冷却结构多目标优化[J]. 汽车工程, 2023, 45(11): 2047-2057. |
[3] | 李捷,吴晓东,许敏,刘永刚. 基于强化学习的城市场景多目标生态驾驶策略[J]. 汽车工程, 2023, 45(10): 1791-1802. |
[4] | 周兴凯,窦祖芳,杨喜娟,杨乔礼. 基于IEEE 802.11p的自适应主次窗口退避机制及验证[J]. 汽车工程, 2022, 44(12): 1856-1865. |
[5] | 刘细平,伏结盛,杜隆鑫,郭高胜,朱文健. 电动汽车用双层永磁体IPMSM解析与优化设计[J]. 汽车工程, 2021, 43(8): 1128-1135. |
[6] | 鲁若宇,胡杰,陈瑞楠,徐文才,曹恺. 基于DMPC的智能汽车协同式自适应巡航控制[J]. 汽车工程, 2021, 43(8): 1177-1186. |
[7] | 蔡英凤,吕志军,孙晓强,王海,刘擎超,陈龙,袁朝春. 基于并线行为识别的自适应巡航控制方法[J]. 汽车工程, 2021, 43(7): 1077-1087. |
[8] | 解少博,罗慧冉,张乾坤,张康康. 智能网联混合动力车辆速度规划的多目标协同控制研究[J]. 汽车工程, 2021, 43(7): 953-961. |
[9] | 洪亮,刘刚,葛如海. 基于12岁儿童损伤阈值的主动式安全气囊多目标优化[J]. 汽车工程, 2021, 43(6): 861-869. |
[10] | 张韦,解礼兵,陈朝辉,周马益,陈永,范吉文,陶丽. 进气道螺旋段关键结构参数多目标优化设计[J]. 汽车工程, 2021, 43(3): 337-344. |
[11] | 张志飞,胡桐铜,范维春,王长金,黄瑞文. 基于拉拽安全性能的汽车座椅优化设计[J]. 汽车工程, 2021, 43(2): 218-225. |
[12] | 陈静,徐森,刘震,唐傲天,吕伟. 基于碰撞安全性的铝合金吸能盒轻量优化[J]. 汽车工程, 2021, 43(2): 241-247. |
[13] | 王普毅,白影春,林程,武振江,王保华. 基于EGO加点策略的动力电池包多目标优化[J]. 汽车工程, 2021, 43(10): 1457-1465. |
[14] | 刘志孟,陶成轩,王丽芳,张玉旺,李树凡. 基于LCC/N磁集成补偿网络的强耦合无线充电系统研究[J]. 汽车工程, 2021, 43(10): 1528-1535. |
[15] | 唐中华,贺岩松,马涛,张志飞,蒲弘杰,李云,陈钊. 汽车声学包轻量化设计[J]. 汽车工程, 2021, 43(1): 113-120. |
|