汽车工程 ›› 2021, Vol. 43 ›› Issue (2): 241-247.doi: 10.19562/j.chinasae.qcgc.2021.02.012

• • 上一篇    下一篇

基于碰撞安全性的铝合金吸能盒轻量优化

陈静1,徐森1(),刘震1,唐傲天1,吕伟2   

  1. 1.吉林大学,汽车仿真与控制国家重点实验室,长春 130022
    2.一汽解放汽车有限公司商用车开发研究院,长春 130011
  • 收稿日期:2020-08-05 修回日期:2020-09-23 出版日期:2021-02-25 发布日期:2021-03-04
  • 通讯作者: 徐森 E-mail:x2500914998@163.com
  • 基金资助:
    国家重点研发计划(2016YFB0101601)

Lightweight Optimization of Aluminum Alloy Energy Absorbing Box for Crash Safety

Jing Chen1,Sen Xu1(),Zhen Liu1,Aotian Tang1,Lü Wei2   

  1. 1.Jilin University,State Key Laboratory of Automotive Simulation and Control,Changchun 130022
    2.Commercial Vehicle Development Institute,FAW Jiefang Automotive Co. ,Ltd. ,Changchun 130011
  • Received:2020-08-05 Revised:2020-09-23 Online:2021-02-25 Published:2021-03-04
  • Contact: Sen Xu E-mail:x2500914998@163.com

摘要:

本文中以一种匹配碳纤维复合材料保险杠防撞梁的吸能盒为研究对象,通过试验设计优化,获得吸能盒最佳锥角和溃缩孔的直径及其排列;然后采用拉丁超立方抽样和基于Kriging代理模型加点策略的多目标粒子群优化算法对吸能盒厚度进行多目标优化。优化后不仅吸能盒吸能量大幅提升,且吸能盒质量明显下降。刚性壁100%重叠率正面碰撞和25%重叠度偏置柱撞试验的结果表明,吸能盒具有良好的吸能特性,碰撞变形模式合理。最后,对保险杠防撞梁和吸能盒样件进行了低速碰撞台车试验,验证了吸能盒碰撞位移量的仿真结果,误差较小。

关键词: 吸能盒, 试验设计, 拉丁超立方抽样, Kriging代理模型, 多目标优化

Abstract:

An energy absorbing box, matched with the anti?collision beam of carbon fiber composite bumper is taken as the object of study in this paper. Through an optimization by the design of experiment, the optimal cone angle and the diameter and arrangement of the collapsed holes of energy absorbing box are obtained. Then, by adopting Latin hypercube sampling technique and the multi?objective particle swarm optimization algorithm based on Kriging surrogate model with adding?point strategy, a multi?objective optimization on the thickness of energy absorbing box is conducted. After optimization, the energy absorbed by energy absorbing box greatly increases with its mass significantly reduces. Furthermore, the results of 100% overlap frontal crash with rigid wall and 25% overlap offset column collision show that the energy absorbing box has good energy absorption characteristics with rational deformation mode in crash. Finally, a low?speed frontal crash sled test is carried out for bumper beam and energy absorbing box, verifying the results of simulation in terms of the crash displacements of energy absorbing box with relatively small error.

Key words: energy absorbing box, design of experiment, Latin hypercube sampling, Kriging surrogate model, multi?objective optimization