Automotive Engineering ›› 2021, Vol. 43 ›› Issue (11): 1710-1719.doi: 10.19562/j.chinasae.qcgc.2021.11.017
Previous Articles Next Articles
Ping Wang,Xiangyuan Peng,Ze Cheng()
Received:
2021-04-07
Revised:
2021-08-02
Online:
2021-11-25
Published:
2021-11-22
Contact:
Ze Cheng
E-mail:chengze@tju.edu.cn
Ping Wang,Xiangyuan Peng,Ze Cheng. SOH Estimation Method for Lithium-ion Batteries Based on DTV-IGPR Model[J].Automotive Engineering, 2021, 43(11): 1710-1719.
"
电池 | RMSE | MAE | ||||
---|---|---|---|---|---|---|
SE+PER | SE | PER | SE+PER | SE | PER | |
Cell1 | 0.010 9 | 0.025 6 | 0.024 5 | 0.011 2 | 0.027 4 | 0.023 5 |
Cell2 | 0.010 8 | 0.078 1 | 0.072 9 | 0.010 3 | 0.089 4 | 0.079 9 |
Cell3 | 0.015 8 | 0.048 0 | 0.040 2 | 0.016 9 | 0.055 3 | 0.046 7 |
Cell4 | 0.013 0 | 0.026 2 | 0.031 8 | 0.012 3 | 0.023 5 | 0.029 2 |
Cell5 | 0.033 8 | 0.084 2 | 0.076 7 | 0.033 6 | 0.057 2 | 0.042 7 |
Cell6 | 0.013 7 | 0.041 1 | 0.046 2 | 0.014 7 | 0.030 9 | 0.036 7 |
Cell7 | 0.006 7 | 0.038 7 | 0.045 8 | 0.006 9 | 0.038 5 | 0.046 7 |
Cell8 | 0.008 9 | 0.023 2 | 0.026 7 | 0.009 0 | 0.023 1 | 0.026 8 |
B0005 | 0.010 2 | 0.175 1 | 0.166 5 | 0.014 9 | 0.218 0 | 0.218 7 |
B0006 | 0.012 1 | 0.082 8 | 0.091 0 | 0.016 6 | 0.091 8 | 0.085 7 |
B0018 | 0.016 9 | 0.079 8 | 0.128 9 | 0.019 5 | 0.091 0 | 0.172 7 |
"
电池 | RMSE | MAE | ||||
---|---|---|---|---|---|---|
SE+PER | SE | PER | SE+PER | SE | PER | |
Cell1 | 0.010 4 | 0.017 4 | 0.017 2 | 0.008 5 | 0.013 4 | 0.012 7 |
Cell2 | 0.010 8 | 0.022 1 | 0.027 8 | 0.010 1 | 0.016 3 | 0.020 5 |
Cell3 | 0.014 7 | 0.043 8 | 0.044 4 | 0.011 8 | 0.041 5 | 0.036 6 |
Cell4 | 0.009 8 | 0.021 1 | 0.017 5 | 0.008 7 | 0.017 0 | 0.015 1 |
Cell5 | 0.011 5 | 0.038 2 | 0.049 6 | 0.008 8 | 0.020 4 | 0.031 5 |
Cell6 | 0.008 7 | 0.011 0 | 0.025 6 | 0.006 8 | 0.007 6 | 0.014 2 |
Cell7 | 0.009 8 | 0.021 7 | 0.021 0 | 0.008 9 | 0.016 6 | 0.017 3 |
Cell8 | 0.011 1 | 0.014 8 | 0.030 8 | 0.009 7 | 0.013 1 | 0.026 7 |
B0005 | 0.014 3 | 0.045 2 | 0.091 0 | 0.012 9 | 0.037 5 | 0.085 7 |
B0006 | 0.016 8 | 0.084 0 | 0.117 2 | 0.016 7 | 0.068 1 | 0.102 2 |
B0018 | 0.011 3 | 0.102 7 | 0.085 6 | 0.019 8 | 0.090 4 | 0.081 3 |
1 | WANG Y, YANG D, ZHANG X, et al. Probability based remaining capacity estimation using data-driven and neural network model[J]. Journal of Power Sources, 2016, 315(may 31):199-208. |
2 | HU X, ZOU C, ZHANG C, et al. Technological developments in batteries: a survey of principal roles, types, and management needs[J]. IEEE Power and Energy Magazine, 2017, 15(5):20-31. |
3 | FARMANN A, WAAG W, MARONGIU A, et al. Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles[J]. Journal of Power Sources, 2015, 281:114-130. |
4 | ZOU C, MANZIE C, NES̆IĆ D, et al. Multi-time-scale observer design for state-of-charge and state-of-health of a lithium-ion battery[J]. Journal of Power Sources, 2016, 335:121-130. |
5 | WU J, ZHANG C, CHEN Z. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks[J]. Applied Energy, 2016, 173:134-140. |
6 | NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239:680-688. |
7 | LIU K. Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review[J]. Renewable and Sustainable Energy Reviews, 2019, 113. |
8 | ORCHARD M E, TANG R, SANA R, et al. Risk-sensitive particle-filtering-based prognosis framework for estimation of remaining useful life in energy storage devices[J]. Studies in Informatics & Control, 2010, 19(3):209-218. |
9 | LI F, XU J. A new prognostics method for state of health estimation of lithium-ion batteries based on a mixture of Gaussian process models and particle filter[J]. Microelectronics Reliability, 2015, 55(7):1035-1045. |
10 | JIANG Y, JIANG J, ZHANG C, et al. Recognition of battery aging variations for LiFePO 4 batteries in 2nd use applications combining incremental capacity analysis and statistical approaches[J]. Journal of Power Sources, 2017, 360:180-188. |
11 | GOH T, PARK M, SEO M, et al. Capacity estimation algorithm with a second-order differential voltage curve for Li-ion batteries with NMC cathodes[J]. Energy, 2017, 135:257-268. |
12 | HAN X, OUYANG M, LU L, et al. Cycle life of commercial lithium-ion batteries with lithium titanium oxide anodes in electric vehicles[J]. Energies, 2014, 7(8):4895-4909. |
13 | SAMAD N A, KIM Y, SIEGEL J B, et al. Battery capacity fading estimation using a force-based incremental capacity analysis[J]. Journal of the Electrochemical Society, 2016, 163(8): A1584-A1594. |
14 | WU B, YUFIT V, MERLA Y, et al. Differential thermal voltammetry for tracking of degradation in lithium-ion batteries[J]. Journal of Power Sources, 2015, 273:495-501. |
15 | BIRKL C. Oxford battery degradation dataset 1[D]. Univ. Oxford, Oxford, U.K., 2017. |
16 | SAHA B, GOEBEL K. Battery data set[DB/OL]. NASA Ames Prognostics Data Repository, 2007. Available: http://ti.arc.nasa.gov/project/prognostic-data-repository. |
17 | LIN X, PEREZ H E, et al. Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring[J]. IEEE Transactions on Control Systems Technology: A Publication of the IEEE Control Systems Society, 2013, 21:1745-1755. |
18 | LIN X, PEREZ H E, MOHAN S, et al. A lumped-parameter electro-thermal model for cylindrical batteries[J]. Journal of Power Sources, 2014, 257:1-11. |
19 | STIASZNY B, ZIEGLER J C, KRAUß E E, et al. Electrochemical characterization and post-mortem analysis of aged LiMn2O4–Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion batteries. Part I: Cycle aging[J]. Journal of Power Sources, 2014, 251:439-450. |
20 | MARTINEZ-LASERNA E, VILLARREAL I, RODRIGUEZ-MARTINEZ L M. Cycle ageing analysis of a LiFePO4/graphite cell with dynamic model validations: towards realistic lifetime predictions[J]. Journal of Power Sources, 2015. |
21 | LI D, DANILOV D L, GAO L, et al. Degradation mechanisms of the graphite electrode in C6/LiFePO4 batteries unraveled by a non-destructive approach[J]. Journal of the Electrochemical Society, 2016, 163(14): A3016-A3021. |
22 | CRAWFORD A J, HUANG Q, KINTNER-MEYER M C W, et al. Lifecycle comparison of selected Li-ion battery chemistries under grid and electric vehicle duty cycle combinations - ScienceDirect[J]. Journal of Power Sources, 2018, 380:185-193. |
23 | MAHER K, YAZAMI R. A study of lithium ion batteries cycle aging by thermodynamics techniques[J]. Journal of Power Sources, 2014, 247:527-533. |
24 | REYNIER Y F, YAZAMI R, FULTZ B. Thermodynamics of lithium intercalation into graphites and disordered carbons[J]. Journal of the Electrochemical Society, 2004, 151(3). |
[1] | Weifeng Kong,Chuan Fang,Jihong Liu,Jianqiu Li,Feiqiang Li,Shengtao Huang,Xingwang Zhao,Yan Shi,Dian Yuan,Liangfei Xu,Peng Sun,Enfei Zhou,Minggao Ouyang. Research on Fuel Cell Cold Start Strategy Based on Single Cell Impedance Consistency Purging [J]. Automotive Engineering, 2024, 46(2): 260-268. |
[2] | Fei Chen,Xiangdong Kong,Yuedong Sun,Xuebing Han,Languang Lu,Yuejiu Zheng,Minggao Ouyang. Progress in Simulation Technology of Lithium-ion Battery Manufacturing Process [J]. Automotive Engineering, 2023, 45(9): 1516-1529. |
[3] | Wenchao Guo,Lin Yang,Zhongwei Deng,Jilin Li,Zhixian Fan. Research on Multi-level Fault Warning Method for Lithium-ion Batteries Driven by Cloud Data [J]. Automotive Engineering, 2023, 45(9): 1677-1687. |
[4] | Haiqiang Liang,Hongwen He,Kangwei Dai,Bo Pang,Peng Wang. Research on Lithium Ion Battery Life Prediction Method Based on Empirical Aging Model and Mechanism Model for Electric Vehicles [J]. Automotive Engineering, 2023, 45(5): 825-835. |
[5] | Chun Wang,Tao Tang,Yongzhi Zhang. A Supercapacitor SOC Estimation Method Based on Weighted Fusion Considering Ambient Temperature Variation [J]. Automotive Engineering, 2023, 45(4): 627-636. |
[6] | Dan Tan,Yachao Wang,Jianwei Tan,Jiachen Li,Changyu Wang,Yunshan Ge. Study on CO2 Emission of E10 Light-Duty Vehicle Under Different Ambient Temperature [J]. Automotive Engineering, 2023, 45(3): 451-458. |
[7] | Yubo Lian,Heping Ling,Qingchan Ma,Qiang Ren,Bin He. Research Progress on Pulse Heating Technology of Lithium-ion Battery for Electric Vehicles [J]. Automotive Engineering, 2023, 45(2): 169-174. |
[8] | Jianhao Zhang,Xingqi Gao,Li Zhang. Micro Short Circuit Diagnosis Method of Battery Pack Based on Capacity Increment Curve and Charge Capacity Difference [J]. Automotive Engineering, 2023, 45(2): 191-198. |
[9] | Qiao Xue,Junqiu Li,Yansheng Xiao,Yu Zhao,Yu Liu,Dongxue Han. Research on the Preheating Strategy of Lithium Batteries Under Subzero Temperature for Electric Vehicles [J]. Automotive Engineering, 2023, 45(11): 2014-2022. |
[10] | Bowen Yan,Tianyu Ma,Yunping Pu,Tiegang Hu,Wei Deng,Ping Jiang,Xianghong Nie. Experimental Study on the Effect of Fuel Injection Control Strategy Under Different Coolant Temperatures for a Hybrid Engine [J]. Automotive Engineering, 2022, 44(9): 1394-1399. |
[11] | Ping Wang,Qingrui Gong,Ze Cheng,Ji’ang Zhang. An AUKF-Based SOC Estimation Method for Lithium-ion Battery [J]. Automotive Engineering, 2022, 44(7): 1080-1088. |
[12] | Yuming Peng,Mingxiao Yuan,Zhuoxin Jing,Yonglin Zhang,Gang Huang. Improved Design of Battery Module Cooling System Under the Influence of Busbar Heat Generation [J]. Automotive Engineering, 2022, 44(6): 859-867. |
[13] | Guihong Bi,Xu Xie,Zilong Cai,Zhao Luo,Chenpeng Chen,Xin Zhao. Capacity Estimation of Lithium-ion Battery Based on Deep Learning Under Dynamic Conditions [J]. Automotive Engineering, 2022, 44(6): 868-878. |
[14] | Yan Ma,Jiayi Li,Qian Ma,Mingchao Chen. Optimization Strategy of Thermal Management of Power Battery Pack Based on Iterative Dynamic Programming [J]. Automotive Engineering, 2022, 44(5): 709-721. |
[15] | Shoutong Liu,Peifeng Huang,Zhonghao Bai. A Review on Research Progress in Failure Mechanism and Simulation Model of Li-ion Battery Related to Mechanical Abuse [J]. Automotive Engineering, 2022, 44(4): 465-475. |