Automotive Engineering ›› 2023, Vol. 45 ›› Issue (3): 350-360.doi: 10.19562/j.chinasae.qcgc.2023.03.002
Special Issue: 智能网联汽车技术专题-规划&决策2023年
Previous Articles Next Articles
Jie Hu(),Qi Zhu,Ruipeng Chen,Minchao Zhang,Zhihao Zhang,Haoyan Liu
Received:
2022-08-04
Revised:
2022-09-04
Online:
2023-03-25
Published:
2023-03-22
Contact:
Jie Hu
E-mail:auto_hj@163.com
Jie Hu,Qi Zhu,Ruipeng Chen,Minchao Zhang,Zhihao Zhang,Haoyan Liu. Global Path Planning of Intelligent Vehicle with Must-Pass Nodes[J].Automotive Engineering, 2023, 45(3): 350-360.
"
算法第1部分:求解关键路径并保存 | |
---|---|
输入:存有地图的邻接链表G,必经节点集Vm,起始节点Nbegin,目标节点Nend 输出:存有关键路径的哈希表key_path_map | |
1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: | Vm_length=len(Vm) fori in range(Vm_length) do forj in range(Vm_length) do ifi==jthen continue end if mid_key_path=A_star(Vm[i], Vm[j], G) key_path_map[{Vm[i], Vm[j]}]=mid_key_path end for end for for each node N in Vmdo begin_key_path=A_star(Nbegin, N, G) end_key_path=A_star(N, Nend, G) key_path_map[{Nbegin, N}]=begin_key_path key_path_map[{N, Nend}]=end_key_path end for |
"
算法第2部分:对待选全局路径进行迭代随机优化 | |
---|---|
输入:存有关键路径的哈希表key_path_map, 模拟退火算法的参数T、α、L、Ts,必经节点集Vm,起始节点Nbegin,目标节点Nend 输出:最短路径及其对应长度path0 | |
1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: 18: 19: 20: 21: 22: 23: 24: 25: | S0=Vm length=len(S0) begin_path=key_path_map[{Nbegin, S0[0]}] mid_path=get_mid_path(S0) end_path=key_path_map[{S0[length-1], Nend}] path0=path_splice(begin_path,mid_path,end_path) cost0=res_path[0] whileT >= Ts do k=0 whilek<Ldo Snew=get_next_sequence(S0) b_path=key_path_map[{Nbegin, Snew[0]}] m_path=get_mid_path(Snew) e_path=key_path_map[{Snew[length-1],Nend}] pathnew=path_splice(b_path,m_path,e_path) costnew=t_path[0] ifcostnew<cost0 or random(0,1)<Pthen path0= pathnew S0=Snew cost0=costnew end if k=k+1 end while T=T*α end while |
"
必经节 点数量 | 最优解 | 算法1 | 算法2 | 算法3 | 算法4 | 本文算法 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
长度/m | 平均 长度/m | 平均 耗时/s | 平均 长度/m | 平均 耗时/s | 平均 长度/m | 平均 耗时/s | 平均 长度/m | 平均 耗时/s | 平均 长度/m | 平均 耗时/s | |
5 | 773.4 | 773.4 | 0.113 | 773.4 | 0.004 | 773.4 | 0.021 | 773.4 | 0.009 | 773.4 | 0.011 |
6 | 921.7 | 921.7 | 0.723 | 921.7 | 0.008 | 921.7 | 0.156 | 961.3 | 0.022 | 921.7 | 0.019 |
7 | 980.3 | 980.3 | 5.659 | 980.3 | 0.028 | 980.3 | 0.493 | 980.3 | 0.021 | 980.3 | 0.026 |
8 | 1 042.3 | 1 042.3 | 50.25 | 1 042.3 | 0.198 | 1 042.3 | 0.726 | 1 042.3 | 0.155 | 1 042.3 | 0.145 |
9 | 1 101.5 | >180 | 1 101.5 | 1.729 | 1 101.5 | 0.981 | 1 140.3 | 0.236 | 1 101.5 | 0.279 | |
10 | 1 110.8 | >180 | 1 110.8 | 16.22 | 1 110.8 | 1.079 | 1 110.8 | 0.291 | 1 110.8 | 0.319 | |
15 | 1 365.7 | >180 | >180 | 1 504.7 | 2.936 | 1 472.3 | 0.622 | 1 365.7 | 0.501 | ||
20 | 1 760.1 | >180 | >180 | 1 926.4 | 6.143 | 1 904.1 | 1.020 | 1 885.3 | 0.922 |
1 | 王梓强, 胡晓光, 李晓筱, 等. 移动机器人全局路径规划算法综述[J]. 计算机科学, 2021, 48(10): 19-29. |
WANG Z Q, HU X G, LI X X, et al. Overview of global path planning algorithms for mobile robots[J]. Computer Science, 2021, 48(10): 19-29. | |
2 | DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1:269-271. |
3 | HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2):100-107. |
4 | LAVALLE S M. Rapidly-exploring random trees: a new tool for path planning[J]. Computer Science Dept. Iowa State University, Tech. Rep. TR 98-11, 1998. |
5 | SUN J, TANG J, LAO S. Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm[J]. IEEE Access, 2017, 5: 18382-18390. |
6 | 李文刚, 汪流江, 方德翔, 等. 联合A*与动态窗口法的路径 规划算法[J]. 系统工程与电子技术, 2021, 43(12): 3694-3702. |
LI W G, WANG S J, FANG D X, et al. Path planning algorithm combining A* with DWA[J]. Systems Engineering and Electronics, 2021, 43(12): 3694-3702. | |
7 | 李全勇, 李波, 张瑞, 等. 基于改进Dijkstra算法的AGV路径规划研究[J]. 机械工程与自动化, 2021(1): 23-25, 28. |
LI Q Y, LI B, ZHANG R, et al. Research on AGV path planning based on improved Dijkstra algorithm[J]. Mechanical Engineering & Automation, 2021(1): 23-25, 28. | |
8 | XUE Y, ZHANG X, JIA S, et al. Hybrid bidirectional rapidly-exploring random trees algorithm with heuristic target graviton[C]. 2017 Chinese Automation Congress (CAC) 2017: 4357-4361. |
9 | JEONG I B, LEE S J, KIM J H. Quick-RRT*: triangular inequality-based implementation of RRT* with improved initial solution and convergence rate[J]. Expert Systems with Applications, 2019, 123: 82-90. |
10 | 周盛世, 单梁, 常路, 等. 基于改进DDPG算法的机器人路径规划算法研究[J]. 南京理工大学学报(自然科学版), 2021, 45(3): 265-270, 287. |
ZHOU S S, SHAN L, CHANG L, et al. Robot path planning algorithm based on improved DDPG algorithm[J]. Journal of Nanjing University of Science and Technology, 2021, 45(3): 265-270, 287. | |
11 | 李瑞林. 基于深度强化学习的无人车路径规划研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
LI R L. Research on path planning method of unmanned vehicle based on deep reinforcement learning[D].Harbin : Harbin Institute of Technology,2020. | |
12 | 黄书力, 胡大裟, 蒋玉明. 经过指定的中间节点集的最短路径算法[J]. 计算机工程与应用, 2015(11): 41-46. |
HUANG S L, HU D S, JIANG Y M. Algorithm for finding shortest path which must go through specified intermediate node set[J]. Computer Engineering and Applications, 2015(11): 41-46. | |
13 | 康文雄, 许耀钊. 节点约束型最短路径的分层Dijkstra算法[J]. 华南理工大学学报(自然科学版), 2017, 45(1): 66-73. |
KANG W X, XU Y Z. A hierarchical Dijkstra algorithm for solving shortest path from constrained nodes[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(1): 66-73. | |
14 | 张军琛. 启发式算法求解带必经节点最短路问题研究[D]. 武汉: 华中科技大学, 2018. |
ZHANG J C. A Heuristic algorithm for shortest path problem with must-pass nodes[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
15 | 徐庆征, 柯熙政. 必经点最短路径问题模型及相应遗传算法研究[J]. 系统工程与电子技术, 2009, 31(2): 459-462. |
XU Q Z, KE X Z. Models and genetic algorithm for designated-points shortest path problem[J]. Systems Engineering and Electronics, 2009, 31(2): 459-462. | |
16 | 刘志, 林坚海, 金拓. 基于改进遗传算法的必经点最短路径算法[J]. 信息通信, 2017(2): 46-48. |
LIU Z, LIN J H, JIN T. The shortest path algorithm based on improved genetic algorithm[J]. Information & Communications, 2017(2): 46-48. | |
17 | 冯琳耀, 袁林旺, 罗文, 等. 节点约束型最短路径的几何代数算法[J]. 电子学报, 2014(5): 846-851. |
FENG L Y, YUAN L W, LUO W, et al. Geometric algebra-based algorithm for solving nodes constrained shortest path[J]. Acta Electronica Sinica, 2014(5): 846-851. | |
18 | GOMES T, MARTINS L, FERREIRA S, et al. Algorithms for determining a node-disjoint path pair visiting specified nodes[J]. Optical Switching and Networking, 2017, 23(2): 189-204. |
19 | 王磊, 孙力帆. 引入必经点约束的路径规划算法研究[J]. 计算机工程与应用, 2020, 56(21): 25-29. |
WANG L, SUN L F. Research on path planning algorithm with obligatory node constraint[J]. Computer Engineering and Applications, 2020, 56(21): 25-29. |
[1] | Jianping Hao,Yanzhao Su,Zhihua Zhong,Jin Huang. Service-Oriented Architecture and Service Scheduling Mechanism for Intelligent Vehicles [J]. Automotive Engineering, 2023, 45(9): 1563-1572. |
[2] | Gaoshi Zhao,Long Chen,Yingfeng Cai,Yubo Lian,Hai Wang,Qingchao Liu,Chenglong Teng. Trajectory Prediction Technology Integrating Complex Network and Memory-Augmented Network [J]. Automotive Engineering, 2023, 45(9): 1608-1616. |
[3] | Lin Hu,Gen Li,Fang Wang,Miao Lin,Ning Wu. Research on Test Scenarios of Passenger Cars and Two-Wheelers at Intersections Based on CIDAS Accident Data [J]. Automotive Engineering, 2023, 45(8): 1417-1427. |
[4] | Qihui Hu,Yingfeng Cai,Hai Wang,Long Chen,Zhaozhi Dong,Qingchao Liu. Heterogeneous Multi-object Trajectory Prediction Method Based on Hierarchical Graph Attention [J]. Automotive Engineering, 2023, 45(8): 1448-1456. |
[5] | Shiju Pan, Jianshi Li, Hua Li, Jingtao Lou, Youchun Xu. Path Following Method of Intelligent Vehicles Based on Feedback Pure Tracking Method [J]. Automotive Engineering, 2023, 45(7): 1134-1144. |
[6] | Jun Li, Wei Zhou, Shuang Tang. Lane Change and Obstacle Avoidance Trajectory Planning of Intelligent Vehicle Based on Adaptive Fitting [J]. Automotive Engineering, 2023, 45(7): 1174-1183. |
[7] | Zixian Li,Shiju Pan,Yuan Zhu,Binbing He,Youchun Xu. Semi-active Suspension Control for Intelligent Vehicles Based on State Feedback and Preview Feedforward [J]. Automotive Engineering, 2023, 45(5): 735-745. |
[8] | Xiang Gao,Long Chen,Xinye Wang,Xiaoxia Xiong,Yicheng Li,Yuexia Chen. Intelligent Vehicle Driving Risk Assessment Method Based on Trajectory Prediction [J]. Automotive Engineering, 2023, 45(4): 588-597. |
[9] | Manjiang Hu,Binjie Mou,Zeyu Yang,Yougang Bian,Xiaohui Qin,Biao Xu. A Hybrid A* Path Planning Method Based on DBSCAN and Dichotomy [J]. Automotive Engineering, 2023, 45(3): 341-349. |
[10] | Lü Yanzhi,Chao Wei,Yuanhao He. An End-to-End Lane Change Method for Autonomous Driving Based on GCN and CIL [J]. Automotive Engineering, 2023, 45(12): 2310-2317. |
[11] | Shiju Pan,Yongle Li,Zixian Li,Binbing He,Yuan Zhu,Youchun Xu. Path Following Method of Intelligent Vehicles Based on Improved Pure Tracking [J]. Automotive Engineering, 2023, 45(1): 1-8. |
[12] | Shulian Zhao,Fei Lai,Keqiang Li,Tao Chen,Zhangjie Meng,Yichao Tang,Siyu Wu,Haodong Tian. Research on Intelligent Vehicle Test Method Based on Digital Twin Technology [J]. Automotive Engineering, 2023, 45(1): 42-51. |
[13] | Wenbo Shao,Jun Li,Yuxin Zhang,Hong Wang. Key Technologies to Ensure the Safety of the Intended Functionality for Intelligent Vehicles [J]. Automotive Engineering, 2022, 44(9): 1289-1304. |
[14] | Zihao Wang,Yingfeng Cai,Hai Wang,Long Chen,Xiaoxia Xiong. Surrounding Multi-Target Trajectory Prediction Method Based on Monocular Visual Motion Estimation [J]. Automotive Engineering, 2022, 44(9): 1318-1326. |
[15] | Wang Liang,Zhaobo Qin,Liang Chen,Yougang Bian,Manjiang Hu. Longitudinal Control Method of Intelligent Vehicles Based on the Improved BP Neural Network [J]. Automotive Engineering, 2022, 44(8): 1162-1172. |