Automotive Engineering ›› 2025, Vol. 47 ›› Issue (2): 201-210.doi: 10.19562/j.chinasae.qcgc.2025.02.001
Jinhui Suo1,Xiaowei Wang1,2(),Peiwen Jiang1,Chi Ding3,Ming Gao1,2,Yougang Bian1,2
Received:
2024-07-14
Revised:
2024-08-28
Online:
2025-02-25
Published:
2025-02-21
Contact:
Xiaowei Wang
E-mail:wxw9@163.com
Jinhui Suo, Xiaowei Wang, Peiwen Jiang, Chi Ding, Ming Gao, Yougang Bian. Domain Adaptive Visual Object Detection for Autonomous Driving Based on Multi-granularity Relation Reasoning[J].Automotive Engineering, 2025, 47(2): 201-210.
"
方法 | 检测器 | 行人 | 骑手 | 汽车 | 货车 | 公交车 | 火车 | 摩托车 | 自行车 | mAP |
---|---|---|---|---|---|---|---|---|---|---|
Baseline | YOLOv5 | 36.9 | 38.4 | 49.0 | 20.6 | 30.1 | 5.2 | 14.5 | 28.7 | 27.9 |
C2F[ | Faster RCNN | 34.0 | 46.9 | 52.1 | 30.8 | 43.2 | 29.9 | 34.7 | 37.4 | 38.6 |
MeGA[ | Faster RCNN | 37.7 | 49.0 | 52.4 | 25.4 | 49.2 | 46.9 | 34.5 | 39.0 | 41.8 |
MMCN[ | Faster RCNN | 33.4 | 46.8 | 51.9 | 29.1 | 48.4 | 43.2 | 36.0 | 37.4 | 40.8 |
FLDMN[ | Faster RCNN | 33.4 | 45.4 | 50.9 | 29.9 | 55.4 | 38.3 | 33.4 | 36.5 | 40.4 |
EPM[ | FCOS | 41.5 | 43.6 | 57.1 | 29.4 | 44.9 | 39.7 | 29.0 | 36.1 | 40.2 |
KTNet[ | FCOS | 43.0 | 42.7 | 60.0 | 32.3 | 46.6 | 38.4 | 31.2 | 38.2 | 41.5 |
SIGMA[ | FCOS | 46.9 | 48.4 | 63.7 | 27.1 | 50.7 | 35.9 | 34.7 | 41.4 | 43.5 |
DA-YOLO[ | YOLOv3 | 29.5 | 27.7 | 46.1 | 9.1 | 28.2 | 4.5 | 12.7 | 24.8 | 36.1 |
S-DAYOLO[ | YOLOv5 | 42.6 | 42.1 | 61.9 | 23.5 | 40.5 | 39.5 | 24.4 | 37.3 | 39.0 |
ConfMix[ | YOLOv5 | 45.0 | 43.4 | 62.6 | 27.3 | 45.8 | 40.0 | 28.6 | 33.5 | 40.8 |
MGR2(本文) | YOLOv5 | 44.1 | 47.8 | 62.4 | 28.1 | 51.8 | 54.0 | 29.7 | 41.2 | 44.9 |
Oracle | YOLOv5 | 46.4 | 49.4 | 67.5 | 29.8 | 55.1 | 52.2 | 35.5 | 40.9 | 47.1 |
"
方法 | 检测器 | 行人 | 骑手 | 汽车 | 货车 | 火车 | mAP |
---|---|---|---|---|---|---|---|
Baseline | YOLOv5 | 55.5 | 15.3 | 80.3 | 26.1 | 21.4 | 39.7 |
MLDA[ | Faster RCNN | 53.0 | 24.5 | 72.2 | 28.7 | 25.3 | 40.7 |
C2F[ | Faster RCNN | 50.4 | 29.7 | 73.6 | 29.7 | 21.6 | 41.0 |
DI-FR[ | Faster RCNN | 58.5 | 37.2 | 75.4 | 30.6 | 18.5 | 44.0 |
PCRT[ | Faster RCNN | 58.8 | 19.4 | 80.1 | 29.9 | 39.6 | 45.6 |
MGR2(本文) | YOLOv5 | 56.2 | 16.5 | 82.6 | 48.3 | 32.7 | 47.3 |
Oracle | YOLOv5 | 84.4 | 88.0 | 96.0 | 87.6 | 80.4 | 87.3 |
"
方法 | 检测器 | 行人 | 骑手 | 汽车 | 货车 | 公交车 | 摩托车 | 自行车 | mAP |
---|---|---|---|---|---|---|---|---|---|
Baseline | YOLOv5 | 37.4 | 24.6 | 58.9 | 19.1 | 20.0 | 16.3 | 21.2 | 28.2 |
PCRT[ | Faster RCNN | 39.1 | 30.4 | 55.9 | 15.3 | 17.5 | 21.8 | 30.1 | 30.0 |
UAMA[ | Faster RCNN | 37.3 | 32.9 | 55.8 | 19.0 | 15.4 | 17.6 | 27.0 | 29.3 |
ILLUME[ | Faster RCNN | 33.2 | 20.5 | 47.8 | 20.8 | 33.8 | 24.4 | 26.7 | 29.6 |
TDD[ | Faster RCNN | 39.6 | 38.9 | 53.9 | 24.1 | 25.5 | 24.5 | 28.8 | 33.6 |
SIGMA++[ | FCOS | 47.5 | 30.4 | 65.6 | 21.1 | 26.3 | 17.8 | 27.1 | 33.7 |
S-DAYOLO[ | YOLOv5 | 48.4 | 29.1 | 64.5 | 29.5 | 28.6 | 14.4 | 20.5 | 33.6 |
MGR2(本文) | YOLOv5 | 45.2 | 34.7 | 65.0 | 25.2 | 29.7 | 21.1 | 31.0 | 36.0 |
Oracle | YOLOv5 | 52.8 | 38.0 | 73.2 | 50.4 | 48.3 | 32.9 | 37.0 | 47.5 |
1 | FAHRENKROG F, REITHINGER S, GÜLSEN B, et al. European research project’s contributions to a safer automated road traffic[J]. Automotive Innovation, 2023, 6(4): 521-530. |
2 | HE X, LV C. Towards safe autonomous driving: decision making with observation-robust reinforcement learning[J]. Automotive Innovation, 2023, 6(4): 509-520. |
3 | 赵东宇, 赵树恩. 基于级联YOLOv7的自动驾驶三维目标检测[J]. 汽车工程, 2023, 45(7): 1112-1122. |
ZHAO D Y, ZHAO S E. Autonomous driving 3D object detection based on cascade YOLOv7[J]. Automotive Engineering, 2023, 45(7): 1112-1122. | |
4 | 张炳力, 秦浩然. 基于RetinaNet及优化损失函数的夜间车辆检测方法[J]. 汽车工程, 2021, 43(8): 1195-1202. |
ZHANG B L, QIN H R. A method of vehicle detection at night based on RetinaNet and optimized loss functions[J]. Automotive Engineering, 2021, 43(8): 1195-1202. | |
5 | CHEN Y, LI W, SAKARIDIS C, et al. Domain adaptive faster R-CNN for object detection in the wild[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3339-3348. |
6 | SAITO K, USHIKU Y, HARADA T, et al. Strong-weak distribution alignment for adaptive object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 6956-6965. |
7 | 胡杰, 徐博远, 熊宗权, 等. 基于多尺度掩码分类域自适应网络的跨域目标检测算法[J]. 汽车工程, 2022, 44(9): 1327-1338. |
HU J, XU B Y, XIONG Z Q, et al. Cross-domain object detection algorithm based on multi-scale mask classification domain adaptive network[J]. Automotive Engineering, 2022, 44(9): 1327-1338. | |
8 | ZHENG Y, HUANG D, LIU S, et al. Cross-domain object detection through coarse-to-fine feature adaptation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 13766-13775. |
9 | LI W, LIU X, YUAN Y. SIGMA: semantic-complete graph matching for domain adaptive object detection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 5281-5290. |
10 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28. |
11 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]. ECCV 2016: 21-37. |
12 | TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9627-9636. |
13 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. |
14 | REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv preprint arXiv:,2018. |
15 | WANG C Y, YEH I H, LIAO H Y M. Yolov9: learning what you want to learn using programmable gradient information[J]. arXiv preprint arXiv:, 2024. |
16 | REDMON J, FARHADI A. Yolo9000: better, faster, stronger[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271. |
17 | CHEN C, ZHENG Z, DING X, et al. Harmonizing transferability and discriminability for adapting object detectors[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 8866-8875. |
18 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv, 2017. |
19 | MAATEN L, HINTON G E. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11). |
20 | CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 3213-3223. |
21 | SAKARIDIS C, DAI D, VAN GOOL L. Semantic foggy scene understanding with synthetic data[J]. International Journal of Computer Vision, 2018, 126(9): 973-992. |
22 | GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. |
23 | YU F, CHEN H, WANG X, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2636-2645. |
24 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]. ECCV 2014: 740-755. |
25 | VS V, GUPTA V, OZA P, et al. MeGA-CDA: memory guided attention for category-aware unsupervised domain adaptive object detection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4514-4524. |
26 | 刘正发, 吴亚, 刘佩根, 等. 基于特征和标签联合分布匹配的智能驾驶跨域自适应目标检测[J]. 汽车工程, 2023, 45(11): 2082-2103. |
LIU Z F, WU Y, LIU P G, et al. Cross-domain object detection for intelligent driving based on joint distribution matching of features and labels[J]. Automotive Engineering, 2023, 45(11): 2082-2103. | |
27 | HSU C C, TSAI Y H, LIN Y Y, et al. Every pixel matters: center-aware feature alignment for domain adaptive object detector[C]. ECCV 2020: 733-748. |
28 | TIAN K, ZHANG C, WANG Y, et al. Knowledge mining and transferring for domain adaptive object detection[C]. IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 9113-9122. |
29 | ZHANG S, TUO H, HU J, et al. Domain adaptive YOLO for one-stage cross-domain detection[C]. Proceedings of The 13th Asian Conference on Machine Learning, 2021: 785-797. |
30 | LI G, JI Z, QU X, et al. Cross-domain object detection for autonomous driving: a stepwise domain adaptative YOLO approach[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(3): 603-615. |
31 | MATTOLIN G, ZANELLA L, RICCI E, et al. Confmix: unsupervised domain adaptation for object detection via confidence-based mixing[C]. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023: 423-433. |
32 | LI W, LIU X, YUAN Y. SIGMA++: improved semantic-complete graph matching for domain adaptive object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(7): 9022-9040. |
33 | XIE R, YU F, WANG J, et al. Multi-level domain adaptive learning for cross-domain detection[C]. IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 3213-3219. |
34 | YANG X, WAN S, JIN P. Domain-invariant region proposal network for cross-domain detection[C]. IEEE International Conference on Multimedia and Expo (ICME), 2020: 1-6. |
35 | WANG X, JIANG P, LI Y, et al. Progressive critical region transfer for cross-domain visual object detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2024: 1-15. |
36 | CAI M, LUO M, ZHONG X, et al. Uncertainty-aware model adaptation for unsupervised cross-domain object detection[J]. arXiv preprint arXiv:, 2021. |
37 | KHINDKAR V, ARORA C, BALASUBRAMANIAN V N, et al. To miss-attend is to misalign! residual self-attentive feature alignment for adapting object detectors[C]. IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022: 376-386. |
38 | HE M, WANG Y, WU J, et al. Cross domain object detection by target-perceived dual branch distillation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 9560-9570. |
39 | LI G, JI Z, QU X. Stepwise domain adaptation (SDA) for object detection in autonomous vehicles using an adaptive centernet[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17729-17743. |
40 | XU M, WANG H, NI B, et al. Cross-domain detection via graph-induced prototype alignment[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 12352-12361. |
[1] | Jiangkun Li,Ruixue Zong,Weiwen Deng,Ying Wang,Juan Ding. Directed Graph-Based Method for Evaluating Similarity in Urban Intersection Scenarios [J]. Automotive Engineering, 2025, 47(1): 23-34. |
[2] | Daofei Li,Hao Pan. Application of Scenario Complexity Evaluation in Trajectory Prediction and Automated Driving Decision-Making [J]. Automotive Engineering, 2024, 46(9): 1556-1563. |
[3] | Hai Wang,Jianguo Li,Yingfeng Cai,Long Chen. A LiDAR-Based Dynamic Driving Scene Multi-task Segmentation Network [J]. Automotive Engineering, 2024, 46(9): 1608-1616. |
[4] | Jianan Zhang,Zhaozheng Hu,Jie Meng,Huahua Hu,Jie Zuo. Distributed Simulation Platform Architecture and Application of Autonomous Driving for Vehicle-Road-Map Collaboration [J]. Automotive Engineering, 2024, 46(8): 1335-1345. |
[5] | Le Tao,Hai Wang,Yingfeng Cai,Long Chen. Multi-object Detection Algorithm Based on Point Cloud for Autonomous Driving Scenarios [J]. Automotive Engineering, 2024, 46(7): 1208-1218. |
[6] | Linhui Li,Yifan Fu,Ting Wang,Xuecheng Wang,Jing Lian. Trajectory Prediction Method Enhanced by Self-supervised Pretraining [J]. Automotive Engineering, 2024, 46(7): 1219-1227. |
[7] | Hai Wang,Yuxuan Ding,Tong Luo,Meng Qiu,Yingfeng Cai,Long Chen. A Multi-class Multi-target Tracking Algorithm Combining Motion Speed and Appearance Features in Driving Scenarios [J]. Automotive Engineering, 2024, 46(6): 956-964. |
[8] | Jing Huang,Xiangzhen Liu,Xiaoyang Deng,Ran Chen. Research on Intelligent Vehicle Trajectory Planning Based on Multimodal Trajectory Prediction [J]. Automotive Engineering, 2024, 46(6): 965-974. |
[9] | Fuxing Yao,Chao Sun,Yungang Lan,Bing Lu,Bo Wang,Haiyang Yu. A Lane Change Decision Method for Intelligent Connected Vehicles Based on Mixture of Expert Model [J]. Automotive Engineering, 2024, 46(5): 882-892. |
[10] | Mengfan Li,Zhongxiang Feng,Weihua Zhang,Jingyu Li. Study on Driver's Visual Transfer Characteristics During the Takeover Process of Human-Computer Co-driving Mode [J]. Automotive Engineering, 2024, 46(5): 795-804. |
[11] | Ting Chikit,Yafei Wang,Yichen Zhang,Mingyu Wu,Yile Wang. Energy-Saving Planning Method for Autonomous Driving Mining Trucks Based on Composite Dynamic Sampling [J]. Automotive Engineering, 2024, 46(4): 588-595. |
[12] | Yiwei Zhou,Mo Xia,Bing Zhu. Multimodal Vehicle Trajectory Prediction Methods Considering Multiple Traffic Participants in Urban Road Scenarios [J]. Automotive Engineering, 2024, 46(3): 396-406. |
[13] | Xiaocong Zhao,Shiyu Fang,Zirui Li,Jian Sun. Extraction and Application of Key Utility Term for Social Driving Interaction [J]. Automotive Engineering, 2024, 46(2): 230-240. |
[14] | Kaibo Huang,Weiwen Deng,Ying Wang,Rui Zhao,Juan Ding. Data Collection and Annotation Method for Radar on Some Key Scenarios [J]. Automotive Engineering, 2024, 46(12): 2257-2266. |
[15] | Xiaolin Tang,Lu Gan,Guofa Li,Keqiang Li,Wenbo Chu. Large Model Alignment Technology for Autonomous Driving: A Review [J]. Automotive Engineering, 2024, 46(11): 1937-1951. |