1 |
MILIOTO A, VIZZO I, BEHLEY J, et al. RangeNet++: fast and accurate lidar semantic segmentation[C]. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 4213-4220.
|
2 |
CHEN X, LI S, MERSCH B, et al. Moving object segmentation in 3D LiDAR data: a learning-based approach exploiting sequential data[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 6529-6536.
|
3 |
蔡英凤, 王海, 陈小波, 等. 驾驶辅助系统基于融合显著性的行人检测算法[J]. 汽车工程, 2015, 37(10): 1215-1220.
|
|
CAI Yingfeng, WANG Hai, CHEN Xiaobo, et al. A pedestrian detection algorithm based on fusion saliency for driving assistance systems [J]. Automotive Engineering, 2015, 37 (10): 1215-1220.
|
4 |
LANG A H, VORA S, CAESAR H, et al. Pointpillars: fast encoders for object detection from point clouds[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12697-12705.
|
5 |
MATURANA D, SCHERER S. VoxNet: a 3D convolutional neural network for real-time object recognition[C]. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015: 922-928.
|
6 |
WANG S, ZHU J, ZHANG R. Meta-RangeSeg: lidar sequence semantic segmentation using multiple feature aggregation[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 9739-9746.
|
7 |
KONG L, LIU Y, CHEN R, et al. Rethinking range view representation for lidar segmentation[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 228-240.
|
8 |
BEHLEY J, GARBADE M, MILIOTO A, et al. SemanticKITTI: a dataset for semantic scene understanding of lidar sequences[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9297-9307.
|
9 |
CAESAR H, BANKITI V, LANG A H, et al. NuScenes: a multimodal dataset for autonomous driving[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11621-11631.
|
10 |
FAN L, XIONG X, WANG F, et al. Rangedet: in defense of range view for lidar-based 3D object detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2918-2927.
|
11 |
SUN J, DAI Y, ZHANG X, et al. Efficient spatial-temporal information fusion for LiDAR-based 3D moving object segmentation[J]. arXiv preprint arXiv:, 2022.
|
12 |
TANG H, LIU Z, ZHAO S, et al. Searching efficient 3D architectures with sparse point-voxel convolution[C]. European Conference on Computer Vision. Springer, 2020: 685-702.
|
13 |
BERMAN M, TRIKI A R, BLASCHKO M B. The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4413-4421.
|
14 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
15 |
ZHANG Z. Improved adam optimizer for deep neural networks[C]. 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS). IEEE, 2018: 1-2.
|
16 |
CORTINHAL T, TZELEPIS G, ERDAL AKSOY E. SalsaNext: fast, uncertainty-aware semantic segmentation of LiDAR point clouds[C]. International Symposium on Visual Computing. Springer, 2020: 207-222.
|
17 |
ZHU X, ZHOU H, WANG T, et al. Cylindrical and asymmetrical 3D convolution networks for lidar segmentation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9939-9948.
|
18 |
ZHANG Y, ZHOU Z, DAVID P, et al. PolarNet: an improved grid representation for online lidar point clouds semantic segmentation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9601-9610.
|
19 |
YAN X, GAO J, ZHENG C, et al. 2DPASS: 2D priors assisted semantic segmentation on lidar point clouds[C]. Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXVIII. Springer, 2022: 677-695.
|
20 |
CHOY C, GWAK J, SAVARESE S. 4D Spatio-Temporal ConvNets: Minkowski convolutional neural networks[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3075-3084.
|