Automotive Engineering ›› 2024, Vol. 46 ›› Issue (7): 1208-1218.doi: 10.19562/j.chinasae.qcgc.2024.07.008
Le Tao1,Hai Wang1(),Yingfeng Cai2,Long Chen2
Received:
2024-01-23
Revised:
2024-02-29
Online:
2024-07-25
Published:
2024-07-22
Contact:
Hai Wang
E-mail:wanghai1019@163.com
Le Tao,Hai Wang,Yingfeng Cai,Long Chen. Multi-object Detection Algorithm Based on Point Cloud for Autonomous Driving Scenarios[J].Automotive Engineering, 2024, 46(7): 1208-1218.
"
算法 | mATE↓ | mASE↓ | mAOE↓ | mAVE↓ | mAAE↓ | mAP↑ | NDS↑ |
---|---|---|---|---|---|---|---|
PointPillar-MultiHead | 0.338 7 | 0.260 0 | 0.320 7 | 0.287 4 | 0.201 5 | 0.446 3 | 0.582 3 |
CBGS | 0.311 5 | 0.255 1 | 0.266 4 | 0.262 6 | 0.204 6 | 0.505 9 | 0.622 9 |
CenterPoint | 0.288 0 | 0.254 3 | 0.372 7 | 0.215 5 | 0.182 4 | 0.592 2 | 0.664 8 |
VoxelNext | 0.301 1 | 0.252 3 | 0.405 7 | 0.216 9 | 0.185 6 | 0.605 3 | 0.666 5 |
CenterFormer | 0.275 0 | 0.252 0 | 0.275 0 | 0.243 0 | 0.208 0 | 0.554 0 | 0.652 0 |
PillarNet(res18) | 0.277 2 | 0.252 0 | 0.289 3 | 0.246 7 | 0.191 1 | 0.599 0 | 0.673 9 |
Li3DeTr | 0.614 0 | 0.676 0 | |||||
UVTR-L | 0.334 0 | 0.257 0 | 0.300 0 | 0.204 0 | 0.182 0 | 0.609 | 0.677 0 |
Transfusion-L | 0.279 7 | 0.253 7 | 0.293 2 | 0.273 2 | 0.185 4 | 0.645 7 | 0.694 3 |
改进算法 | 0.276 9 | 0.252 7 | 0.338 4 | 0.196 0 | 0.186 0 | 0.651 9 | 0.701 0 |
1 | 王海, 李洋, 蔡英凤, 等. 基于激光雷达的3D实时车辆跟踪[J]. 汽车工程, 2021, 43(7): 1013-1021. |
WANG Hai, LI Yang, CAI Yingfeng, et al. 3D real⁃time vehicle tracking based on lidar[J]. Automotive Engineering, 2021, 43(7): 1013-1021. | |
2 | 娄新雨, 王海, 蔡英凤, 等. 采用64线激光雷达的实时道路障碍物检测与分类算法的研究[J]. 汽车工程, 2019, 41(7): 779-784. |
LOU Xinyu, WANG Hai, CAI Yingfeng, et al. A research on an algorithm for real-time detection and classification of road obstacle by using 64-line lidar[J]. Automotive Engineering, 2019, 41(7): 779-784. | |
3 | QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660. |
4 | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30. |
5 | SHI S, WANG X, LI H. PointrCNN: 3D object proposal generation and detection from point cloud[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 770-779. |
6 | ZHANG Y, HU Q, XU G, et al. Not all points are equal: learning highly efficient point-based detectors for 3D lidar point clouds[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 18953-18962. |
7 | 龚章鹏, 王国业, 于是. 基于体素网络的道路场景多类目标识别算法[J]. 汽车工程, 2021, 43(4): 469-477. |
GONG Zhangpeng, WANG Guoye, YU Shi. The algorithm of multi⁃category object recognition in road scene based on voxel network[J]. Automotive Engineering, 2021, 43(4): 469-477. | |
8 | SHI S, GUO C, JIANG L, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10529-10538. |
9 | SHI S, JIANG L, DENG J, et al. PV-RCNN++: point-voxel feature set abstraction with local vector representation for 3D object detection[J]. International Journal of Computer Vision, 2023, 131(2): 531-551. |
10 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149. |
11 | YIN T, ZHOU X, KRAHENBUHL P. Center-based 3D object detection and tracking[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 11784-11793. |
12 | GE R, DING Z, HU Y, et al. AFDet: anchor free one stage 3D object detection[M]. arXiv, 2020. |
13 | DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6569-6578. |
14 | YAN Y, MAO Y, LI B. Second: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337. |
15 | 夏祥腾, 王大方, 曹江, 等. 基于稀疏卷积神经网络的车载激光雷达点云语义分割方法[J]. 汽车工程, 2022, 44(1): 26-35. |
XIA Xiangteng, WANG Dafang, CAO Jiang, et al. Semantic segmentation method of on-board lidar point cloud based on sparse convolutional neural network[J]. Automotive Engineering, 2022, 44(1): 26-35. | |
16 | GRAHAM B, VAN DER MAATEN L. Submanifold sparse convolutional networks[M]. arXiv, 2017. |
17 | CHEN Y, LIU J, ZHANG X, et al. LargekerNel 3D: scaling up kernels in 3D sparse CNNS[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 13488-13498. |
18 | MAO J, XUE Y, NIU M, et al. Voxel transformer for 3D object detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3164-3173. |
19 | ZHANG G, JUNNAN C, GAO G, et al. HedNet: a hierarchical encoder-decoder network for 3D object detection in point clouds[J]. Advances in Neural Information Processing Systems, 2024, 36. |
20 | LIU J J, HOU Q, CHENG M M, et al. Improving convolutional networks with self-calibrated convolutions[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10096-10105. |
21 | CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11621-11631. |
22 | WANG H, SHI C, SHI S, et al. DSVT: dynamic sparse voxel transformer with rotated sets[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 13520-13529. |
23 | 赵东宇, 赵树恩. 基于级联 YOLOv7 的自动驾驶三维目标检测[J]. 汽车工程, 2023, 45(7): 1112-1122. |
ZHAO Dongyu, ZHAO Shuen. Autonomous driving 3D object detection based on cascade YOLOv7[J]. Automotive Engineering, 2023, 45(7): 1112-1122. | |
24 | LI Y, HOU Q, ZHENG Z, et al. Large selective kernel network for remote sensing object detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 16794-16805. |
25 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988. |
26 | TEAM O D. OpenPCDet: an open-source toolbox for 3D object detection from point clouds (2020)[Z]. 2020. |
27 | LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[M]. arXiv, 2019. |
28 | ZHU B, JIANG Z, ZHOU X, et al. Class-balanced grouping and sampling for point cloud 3D object detection[M]. arXiv, 2019. |
29 | LANG A H, VORA S, CAESAR H, et al. Pointpillars: fast encoders for object detection from point clouds[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12697-12705. |
30 | CHEN Y, LIU J, ZHANG X, et al. VoxelNeXt: fully sparse VoxelNet for 3D object detection and tracking[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 21674-21683. |
31 | ZHOU Z, ZHAO X, WANG Y, et al. CenterFormer: center-based transformer for 3D object detection[M]//AVIDAN S, BROSTOW G, CISSÉ M, et al. Computer Vision-ECCV 2022: Vol. 13698. Cham: Springer Nature Switzerland, 2022: 496-513. |
32 | SHI G, LI R, MA C. PillarNet: real-time and high-performance pillar-based 3D object detection[M]//AVIDAN S, BROSTOW G, CISSÉ M, et al. Computer Vision-ECCV 2022: Vol. 13670. Cham: Springer Nature Switzerland, 2022: 35-52. |
33 | ERABATI G K, ARAUJO H. Li3detr: a lidar based 3D detection transformer[C]. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023: 4250-4259. |
34 | LI Y, CHEN Y, QI X, et al. Unifying voxel-based representation with transformer for 3D object detection[J]. Advances in Neural Information Processing Systems, 2022, 35: 18442-18455. |
35 | BAI X, HU Z, ZHU X, et al. Transfusion: robust lidar-camera fusion for 3D object detection with transformers[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 1090-1099. |
[1] | Hai Wang,Yuxuan Ding,Tong Luo,Meng Qiu,Yingfeng Cai,Long Chen. A Multi-class Multi-target Tracking Algorithm Combining Motion Speed and Appearance Features in Driving Scenarios [J]. Automotive Engineering, 2024, 46(6): 956-964. |
[2] | Jing Huang,Xiangzhen Liu,Xiaoyang Deng,Ran Chen. Research on Intelligent Vehicle Trajectory Planning Based on Multimodal Trajectory Prediction [J]. Automotive Engineering, 2024, 46(6): 965-974. |
[3] | Fuxing Yao,Chao Sun,Yungang Lan,Bing Lu,Bo Wang,Haiyang Yu. A Lane Change Decision Method for Intelligent Connected Vehicles Based on Mixture of Expert Model [J]. Automotive Engineering, 2024, 46(5): 882-892. |
[4] | Mengfan Li,Zhongxiang Feng,Weihua Zhang,Jingyu Li. Study on Driver's Visual Transfer Characteristics During the Takeover Process of Human-Computer Co-driving Mode [J]. Automotive Engineering, 2024, 46(5): 795-804. |
[5] | Ting Chikit,Yafei Wang,Yichen Zhang,Mingyu Wu,Yile Wang. Energy-Saving Planning Method for Autonomous Driving Mining Trucks Based on Composite Dynamic Sampling [J]. Automotive Engineering, 2024, 46(4): 588-595. |
[6] | Hongyi Liang,Jikai Chen,Wanli Liu,Fengchong Lan,Bingda Mo,Jiqing Chen. Prediction of the Remaining Useful Life of Real Vehicle Lithium Batteries by Fusion of K-means Clustering and Sequence Decomposition [J]. Automotive Engineering, 2024, 46(4): 634-642. |
[7] | Yiwei Zhou,Mo Xia,Bing Zhu. Multimodal Vehicle Trajectory Prediction Methods Considering Multiple Traffic Participants in Urban Road Scenarios [J]. Automotive Engineering, 2024, 46(3): 396-406. |
[8] | Xiaocong Zhao,Shiyu Fang,Zirui Li,Jian Sun. Extraction and Application of Key Utility Term for Social Driving Interaction [J]. Automotive Engineering, 2024, 46(2): 230-240. |
[9] | Ze Gao, Zunkang Chu, Jiasheng Shi, Fu Lin, Weixiong Rao, Haiyan Yu. Research on Fast Prediction Method of Stress Field of Automotive Parts Based on Graph Network [J]. Automotive Engineering, 2024, 46(1): 170-178. |
[10] | Yanli Ma, Qin Qin, Fangqi Dong, Yining Lou. Takeover Risk Assessment Model Based on Risk Field Theory Under Different Cognitive Secondary Tasks [J]. Automotive Engineering, 2024, 46(1): 9-17. |
[11] | Weiguo Liu,Zhiyu Xiang,Weiping Liu,Daoxin Qi,Zixu Wang. Research on Vehicle Control Algorithm Based on Distributed Reinforcement Learning [J]. Automotive Engineering, 2023, 45(9): 1637-1645. |
[12] | Weiguo Liu,Zhiyu Xiang,Rui Liu,Guodong Li,Zixu Wang. Research on End-to-End Vehicle Motion Planning Method Based on Deep Learning [J]. Automotive Engineering, 2023, 45(8): 1343-1352. |
[13] | Ming Wang,Xiaolin Tang,Kai Yang,Guofa Li,Xiaosong Hu. A Motion Planning Method for Autonomous Vehicles Considering Prediction Risk [J]. Automotive Engineering, 2023, 45(8): 1362-1372. |
[14] | Dongyu Zhao, Shuen Zhao. Autonomous Driving 3D Object Detection Based on Cascade YOLOv7 [J]. Automotive Engineering, 2023, 45(7): 1112-1122. |
[15] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
|