Automotive Engineering ›› 2025, Vol. 47 ›› Issue (4): 614-624.doi: 10.19562/j.chinasae.qcgc.2025.04.003
Qirui Qin1,Hai Wang1(),Yingfeng Cai2,Long Chen2,Yicheng Li2
Received:
2024-07-14
Revised:
2024-10-06
Online:
2025-04-25
Published:
2025-04-18
Contact:
Hai Wang
E-mail:wanghai1019@163.com
Qirui Qin,Hai Wang,Yingfeng Cai,Long Chen,Yicheng Li. Real-Time Instance Segmentation Algorithm for Autonomous Driving Based on Instance Activation Maps[J].Automotive Engineering, 2025, 47(4): 614-624.
"
算法 | BDD100K | R-BDD | nuImages | Waymo | |||
---|---|---|---|---|---|---|---|
mAP(Mask) | FPS | mAP(Mask) | FPS | mAP(Mask) | FPS | FPS | |
Yolact | 19.5 | 26.0 | 14.1 | 26.0 | 34.7 | 23.7 | 19.2 |
Centermask | 19.4 | 23.9 | 13.8 | 23.9 | 34.9 | 21.7 | 16.6 |
CondInst | 19.9 | 22.1 | 14.8 | 22.1 | 34.4 | 18.8 | 14.1 |
SOLOv2 | 20.3 | 23.8 | 16.4 | 23.8 | 35.2 | 21.2 | 15.9 |
RTMDet-Ins | 21.7 | 24.2 | 18.0 | 24.2 | 35.6 | 22.3 | 17.3 |
Boxsnake | 18.3 | 14.1 | 13.9 | 14.1 | 32.1 | 11.9 | 6.1 |
YOLOv8-seg | 17.7 | 30.0 | 14.5 | 30.1 | 35.3 | 28.0 | 22.1 |
FastInst | 21.6 | 25.7 | 18.6 | 25.5 | 36.7 | 23.2 | 19.0 |
Box2mask | 20.2 | 16.6 | 14.2 | 16.6 | 34.8 | 13.1 | 7.2 |
YOLOv11-seg | 19.8 | 33.0 | 15.8 | 33.0 | 35.7 | 29.6 | 23.7 |
Baseline | 19.3 | 34.6 | 16.0 | 34.5 | 35.1 | 31.6 | 25.4 |
Ours | 22.4 | 31.0 | 19.5 | 31.0 | 37.7 | 28.8 | 22.5 |
1 | 王海, 李洋, 蔡英凤, 等. 基于激光雷达的 3D 实时车辆跟踪 [J]. 汽车工程, 2021, 43(7): 1013-1021. |
WANG Hai, LI Yang, CAI Yingfeng, et al. 3D real⁃time vehicle tracking based on lidar [J]. Automotive Engineering, 2021, 43(7): 1013-1021. | |
2 | 武志斐, 李守彪. 基于实例分割的车道线检测算法 [J]. 汽车工程, 2023, 45(2): 263-272. |
WU Zhifei, LI Shoubiao. Lane detection algorithm based on instance segmentation [J]. Automotive Engineering, 2023, 45(2): 263-272. | |
3 | 陈妍妍, 王海, 蔡英凤, 等. 基于检测的高效自动驾驶实例分割方法 [J]. 汽车工程, 2023, 45(4): 541-550. |
CHEN Yanyan, WANG Hai, CAI Yingfeng, et al. Efficient automatic driving instance segmentation method based on detection [J]. Automotive Engineering, 2023, 45(4): 541-550. | |
4 | HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]. Proceedings of the Proceedings of the IEEE International Conference on Computer Vision, F, 2017. |
5 | ZHANG G, LU X, TAN J, et al. RefineMask: towards high-quality instance segmentation with fine-grained features[C]. Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2021. |
6 | WEN Q, YANG J, YANG X, et al. PatchDCT: patch refinement for high quality instance segmentation[C]. Proceedings of the The Eleventh International Conference on Learning Representations, F, 2022. |
7 | WANG X, KONG T, SHEN C, et al. SOLO: segmenting objects by locations[C]. Proceedings of the Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XVIII 16, F, 2020. Springer. |
8 | WANG X, ZHANG R, KONG T, et al. SOLOv2: dynamic and fast instance segmentation [J]. Advances in Neural Information Processing Systems, 2020, 33: 17721-17732. |
9 | BOLYA D, ZHOU C, XIAO F, et al. Yolact: real-time instance segmentation[C]. Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, F, 2019. |
10 | TIAN Z, SHEN C, CHEN H. Conditional convolutions for instance segmentation[C]. Proceedings of the Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part I 16, F, 2020. Springer. |
11 | CHEN Y, DAI X, LIU M, et al. Dynamic convolution: attention over convolution kernels[C]. Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2020. |
12 | CHENG B, MISRA I, SCHWING A G, et al. Masked-attention mask transformer for universal image segmentation[C]. Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2022. |
13 | JAIN J, LI J, CHIU M T, et al. OneFormer: one transformer to rule universal image segmentation[C]. Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2023. |
14 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [J]. Advances in Neural Information Processing Systems, 2017, 30. |
15 | CHENG T, WANG X, CHEN S, et al. Sparse instance activation for real-time instance segmentation[C]. Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2022. |
16 | YU F, CHEN H, WANG X, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[C]. Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2020. |
17 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, F, 2016. |
18 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection [J]. arXiv preprint arXiv:, 2020. |
19 | WANG W, XIE E, LI X, et al. PVT v2: improved baselines with pyramid vision transformer [J]. Computational Visual Media, 2022, 8(3): 415-424. |
20 | WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism [J]. Advances in Neural Information Processing Systems, 2024, 36. |
21 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]. Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2021. |
22 | YU Z, ZHAO C, WANG Z, et al. Searching central difference convolutional networks for face anti-spoofing[C]. Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2020. |
23 | ZHU X, HU H, LIN S, et al. Deformable convnets v2: more deformable, better results[C]. Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2019. |
24 | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. Proceedings of the European Conference on Computer Vision, F, 2020. Springer. |
25 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. Proceedings of the Proceedings of the IEEE International Conference on Computer Vision, F, 2017. |
26 | MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]. Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), F, 2016. IEEE. |
27 | ZHENG S, LU C, NARASIMHAN S G. TPSeNCE: towards artifact-free realistic rain generation for deraining and object detection in rain[C]. Proceedings of the Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, F, 2024. |
28 | CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]. Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2020. |
29 | SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: Waymo open dataset[C]. Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2020. |
30 | KINGMA D P, BA J. Adam: a method for stochastic optimization [J]. arXiv preprint arXiv:, 2014. |
31 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]. Proceedings of the Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, F, 2014. Springer. |
32 | LEE Y, PARK J. CenterMask: real-time anchor-free instance segmentation[C]. Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2020. |
33 | HE J, LI P, GENG Y, et al. Fastinst: a simple query-based model for real-time instance segmentation[C]. Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2023. |
34 | LYU C, ZHANG W, HUANG H, et al. RTMDet: an empirical study of designing real-time object detectors [J]. arXiv preprint arXiv:, 2022. |
35 | YANG R, SONG L, GE Y, et al. BoxSnake: polygonal instance segmentation with box supervision[C]. Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, F, 2023. |
36 | LI W, LIU W, ZHU J, et al. Box2Mask: box-supervised instance segmentation via level-set evolution [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024. |
37 | JOCHER G, CHAURASIA A, QIU J. Ultralytics YOLOv8 [Z]. 2023. |
38 | JOCHER G, QIU J. Ultralytics YOLO11 [Z]. 2024. |
[1] | Jinhui Suo, Xiaowei Wang, Peiwen Jiang, Chi Ding, Ming Gao, Yougang Bian. Domain Adaptive Visual Object Detection for Autonomous Driving Based on Multi-granularity Relation Reasoning [J]. Automotive Engineering, 2025, 47(2): 201-210. |
[2] | Jiangkun Li,Ruixue Zong,Weiwen Deng,Ying Wang,Juan Ding. Directed Graph-Based Method for Evaluating Similarity in Urban Intersection Scenarios [J]. Automotive Engineering, 2025, 47(1): 23-34. |
[3] | Daofei Li,Hao Pan. Application of Scenario Complexity Evaluation in Trajectory Prediction and Automated Driving Decision-Making [J]. Automotive Engineering, 2024, 46(9): 1556-1563. |
[4] | Hai Wang,Jianguo Li,Yingfeng Cai,Long Chen. A LiDAR-Based Dynamic Driving Scene Multi-task Segmentation Network [J]. Automotive Engineering, 2024, 46(9): 1608-1616. |
[5] | Jianan Zhang,Zhaozheng Hu,Jie Meng,Huahua Hu,Jie Zuo. Distributed Simulation Platform Architecture and Application of Autonomous Driving for Vehicle-Road-Map Collaboration [J]. Automotive Engineering, 2024, 46(8): 1335-1345. |
[6] | Le Tao,Hai Wang,Yingfeng Cai,Long Chen. Multi-object Detection Algorithm Based on Point Cloud for Autonomous Driving Scenarios [J]. Automotive Engineering, 2024, 46(7): 1208-1218. |
[7] | Linhui Li,Yifan Fu,Ting Wang,Xuecheng Wang,Jing Lian. Trajectory Prediction Method Enhanced by Self-supervised Pretraining [J]. Automotive Engineering, 2024, 46(7): 1219-1227. |
[8] | Hai Wang,Guirong Zhang,Tong Luo,Meng Qiu,Yingfeng Cai,Long Chen. A Multi-modal Data Mining Algorithm for Corner Case of Automatic Driving Road Scene [J]. Automotive Engineering, 2024, 46(7): 1239-1248. |
[9] | Zhigang Yang,Yujing Li,Chao Xia,Mengjia Wang,Lei Yu. A High Time-Resolution Reconstruction on the Automotive Turbulent Wake Based on LSTM-POD [J]. Automotive Engineering, 2024, 46(7): 1302-1313. |
[10] | Hai Wang,Yuxuan Ding,Tong Luo,Meng Qiu,Yingfeng Cai,Long Chen. A Multi-class Multi-target Tracking Algorithm Combining Motion Speed and Appearance Features in Driving Scenarios [J]. Automotive Engineering, 2024, 46(6): 956-964. |
[11] | Jing Huang,Xiangzhen Liu,Xiaoyang Deng,Ran Chen. Research on Intelligent Vehicle Trajectory Planning Based on Multimodal Trajectory Prediction [J]. Automotive Engineering, 2024, 46(6): 965-974. |
[12] | Fuxing Yao,Chao Sun,Yungang Lan,Bing Lu,Bo Wang,Haiyang Yu. A Lane Change Decision Method for Intelligent Connected Vehicles Based on Mixture of Expert Model [J]. Automotive Engineering, 2024, 46(5): 882-892. |
[13] | Mengfan Li,Zhongxiang Feng,Weihua Zhang,Jingyu Li. Study on Driver's Visual Transfer Characteristics During the Takeover Process of Human-Computer Co-driving Mode [J]. Automotive Engineering, 2024, 46(5): 795-804. |
[14] | Ting Chikit,Yafei Wang,Yichen Zhang,Mingyu Wu,Yile Wang. Energy-Saving Planning Method for Autonomous Driving Mining Trucks Based on Composite Dynamic Sampling [J]. Automotive Engineering, 2024, 46(4): 588-595. |
[15] | Hongyi Liang,Jikai Chen,Wanli Liu,Fengchong Lan,Bingda Mo,Jiqing Chen. Prediction of the Remaining Useful Life of Real Vehicle Lithium Batteries by Fusion of K-means Clustering and Sequence Decomposition [J]. Automotive Engineering, 2024, 46(4): 634-642. |
|