Automotive Engineering ›› 2025, Vol. 47 ›› Issue (4): 776-787.doi: 10.19562/j.chinasae.qcgc.2025.04.018
Junzhao Jiang1(),Yekai Xu1,Xiaowen Zhang1,Wenjun Wang2
Received:
2024-06-12
Revised:
2024-07-24
Online:
2025-04-25
Published:
2025-04-18
Contact:
Junzhao Jiang
E-mail:chlgch.2006@hfut.edu.cn
Junzhao Jiang,Yekai Xu,Xiaowen Zhang,Wenjun Wang. Research on Matching Evaluation Method of Tire and Vehicle Handling Stability Based on Subjective and Objective Fusion[J].Automotive Engineering, 2025, 47(4): 776-787.
"
类别 | 项目 | 指标 |
---|---|---|
整车 客观 试验 | 正弦迟滞 试验 | 横摆角速度时间滞后(K1) |
侧向加速度时间滞后(K2) | ||
质心侧偏角时间滞后(K3) | ||
横摆角速度峰值(K4) | ||
侧向加速度峰值(K5) | ||
质心侧偏角峰值(K6) | ||
中心区操纵 稳定性试验 | 转向刚度(K7) | |
转向系统摩擦力矩(K8) | ||
侧向加速度迟滞(K9) | ||
侧向加速度为0时的转向盘力矩梯度(K10) | ||
侧向加速度为0.1g时的转向盘力矩梯度(K11) | ||
转向迟滞(K12) | ||
阶跃输入 试验 | 横摆角速度响应时间(K13) | |
侧向加速度响应时间(K14) | ||
慢增量 试验 | 侧向加速度为0.5 m/s2对应的转向盘力矩(K15) | |
侧向加速度为(1-8) m/s2对应的转向盘力矩(K16-K23) | ||
转向盘力矩线性度(0.5g-0.8g)(K24) | ||
转向盘力矩线性度(0.05g-0.3g)(K25) | ||
转向力矩峰值对应的侧向加速度(K26) | ||
侧向加速度为0.5 m/s2对应的转向盘转角(K27) | ||
侧向加速度为(1-8) m/s2对应的转向盘转角(K28-K35) | ||
转向盘转角线性度(0.5g-0.8g)(K36) | ||
转向盘转角线性度(0.05g-0.3g)(K37) | ||
侧向加速度为(1-8) m/s2对应的横摆角速度(K38-K45) | ||
横摆角速度线性度(0.5g-0.8g)(K46) | ||
横摆角速度线性度(0.05g-0.3g)(K47) | ||
稳态回转 试验 | 车身侧倾角梯度(K48) | |
(0.2g-0.8g)处不足转向梯度(K49-K52) | ||
最大侧向加速度(K53) | ||
横摆角速度峰值对应的侧向加速度(K54) | ||
横摆角速度峰值(K55) |
"
主观 区域 | 预选整车指标 | 降维后整车指标 |
---|---|---|
L1 | K7~K12,K15~K17,K25, K27~K29,K37 | K8,K11,K12,K17, K25,K28,K29,K37 |
L2 | K10,K11,K15~K25 | K10,K11, K23~K25 |
L3 | K1~K6,K13,K14, K27~K46, K49~K52 | K4,K6,K32, K34~K36, K46, K49~K52 |
L4 | K24,K25,K36,K37,K46,K47,K56 | K25,K36,K37,K46 |
L5 | K4,K5,K34,K35,K44,K45, K53~K55 | K35,K45,K53~K55 |
L6 | K7~K11 | K8~K10 |
L7 | K1~K6,K34, K35,K44,K45, K51~K55 | K5,K6,K35, K51~K55 |
L8 | K48~K55 | K48~K55 |
1 | ZHOU W, GUO X X, ZHANG C C, et al. A novel objective evaluation method of drivability for passenger cars considering subjective and objective consistency[J]. J. Automobile Engineering,2023,237:607-621. |
2 | 钟凡.整车操纵稳定性主客观评价一致性研究[D].长沙:湖南大学,2019. |
ZHONG Fan. Study on subjective and objective evaluation consistency of vehicle handling stability[D]. Changsha: Hunan University,2019. | |
3 | GIUSEPPE G,STEFANO P D,DANIELE C, et al. Ride analysis tools for passenger cars: objective and subjective evaluation techniques and correlation processes-a review[J].Vehicle System Dynamics,2024,62(7):1876-1902. |
4 | 毛万鑫.微型汽车驾驶性主客观评价方法研究[D].武汉:武汉理工大学,2022. |
MAO Wanxin. Research on subjective and objective evaluation methods[D]. Wuhan: Wuhan University of Technology,2022. | |
5 | PELIKÁN J, STEINBAUER P, VALASEK M, et al. Correlation of objective and subjective evaluation of vehicle handling by neural networks[J]. Bulletin of Applied Mechanics,2012, 8(29). |
6 | 张义花,许洪国,刘宏飞,等.双挂汽车列车操纵稳定性评价指标研究[J].中国公路学报,2017,30(5):145-151. |
ZHANG Yihua, XU Hongguo, LIU Hongfei, et al. Research on the evaluation index of handling stability of tractor and double trailer.combination[J].China Journal of Highway and Transport,2017,30(5):145-151. | |
7 | ZHOU W, GUO X, ZHANG C, et al.A novel objective evaluation method of drivability for passenger cars considering subjective and objective consistency[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2023,237(4):607-621. |
8 | 陈栋.融合操稳主客观评价的悬架K&C特性优化研究[D].长春:吉林大学,2018. |
CHEN Dong. Research on suspension k&c characteristics tics optimization including handling subjective and objective evaluation[D].Changchun:Jilin University,2018. | |
9 | 汽车操纵稳定性试验方法:GB/T 6323—2014[S].2014. |
Test methods for vehicle handling and stability:GB/T 6323—2014[S].2014. | |
10 | KUIPER E, VAN OOSTEN J J M. The PAC2002 advanced handling tire model[J]. Vehicle System Dynamics, 2007, 45(S1): 153-167. |
11 | FENG S, ZHAO Y, DENG H, et al.Parameter identification of magic formula tire model based on fibonacci tree optimization algorithm[J].Journal of Shanghai Jiaotong University (Science),2021,26(5):647-657. |
12 | 张丽霞,王亚平,潘福全,等.针对汽车最速操纵稳定性的轮胎参数优化[J].重庆理工大学学报(自然科学),2022,36(4):35-42. |
ZHANG Lixia,WANG Yaping,PAN Fuquan, et al. Tire parameter optimization for vehicle minimum time handling and stability[J]. Journal of Chongqing University of Technology(Natural Science),2022,36(4):35-42. | |
13 | 陈焕明,郭孔辉.轮胎性能对车辆操纵稳定性影响的仿真研究[J].汽车工程,2015,37(5):491-494,505. |
CHEN Huanming,GUO Konghui.Simulation of the effects of tire performance on vehicle handling stability[J].Automotive Engineering,2015,37(5):491-494,505. | |
14 | 汽车轮胎纵向和横向刚性试验方法:GB/T 23663[S].2020. |
Test methods for longitudinal and transverse rigidity of automotive tires: GB/T 23663[S].2020. | |
15 | 汽车轮胎静态接地压力分布试验方法:GB/T 22038—2018[S].2018. |
Test method for static ground pressure distribution of automotive tires:GB/T 22038—2018[S].2018. | |
16 | SUBRAMANIYAM K V, KUMAR C S N, SUBRAMANIAN S C.Analysis of handling performance of hybrid electric vehicles[J]. IFAC-PapersOnLine, 2018, 51(1): 190-195. |
17 | GOMEZ G L G, NYBACKA M, BAKKER E, et al. Objective metrics for vehicle handling and steering and their correlations with subjective assessments[J]. International Journal of Automotive Technology,2016, 17(5): 777-794. |
18 | 田甜.乘用车操纵稳定性主观评价客观化研究[D].长春:吉林大学,2019. |
TIAN Tian. Research on objectification of subjective evaluation for passenger vehicle handling stability[D]. Changchun:Jilin University,2019. | |
19 | 韦勇,韦宝侣,赵亮,等.轮胎力学特性对汽车操纵稳定性的影响分析[J].轮胎工业,2020,40(3):131-138. |
WEI Yong,WEI Baolv,ZHAO Liang,et al. Influence of tire mechanical characteristics on handling stability of vehicle[J].Tire Industry,2020,40(3):131-138. | |
20 | 高磊.基于操稳性能评价的轮胎与整车匹配方法研究[D].长春:吉林大学,2021. |
GAO Lei. Research on tire and vehicle matching method based on handling and stability performance evaluation[D].Changchun:Jilin University,2021. |
[1] | Zichen Zheng,Shu Wang,Xuan Zhao,Zhaoke Li. Integrated Control of Distributed Drive Electric Vehicle AFS/DYC Based on Hybrid Model Predictive Control [J]. Automotive Engineering, 2025, 47(3): 470-480. |
[2] | Ying Zhao,Jibo Hao,Keming Zhou,Jianfeng Hu,Yicheng Wang,Yueqiang Wang. Mechanical Properties of Double-arrow Non-pneumatic Tires Under the Condition of Unstructured Road [J]. Automotive Engineering, 2025, 47(1): 149-160. |
[3] | Juan Zeng,Hao Wang,Bo Xu,Hongchang Zhang. Research on the Driver's Hazard Perception State Recognition Model Based on Strength and Weakness Perception Design [J]. Automotive Engineering, 2024, 46(6): 995-1005. |
[4] | Weidong Liu,Zongzhi Han,Zhenhai Gao,Yanhu Kang. Real-Time Pavement Recognition Technology Based on Intelligent Tire System [J]. Automotive Engineering, 2024, 46(4): 617-625. |
[5] | Lin Chen,Manping He,Shuxiao Wu,Deqian Chen,Mingsi Zhao,Haihong Pan. Fast Clustering of Retired Lithium-ion Batteries Based on Adaptive Fuzzy C-means Algorithm [J]. Automotive Engineering, 2024, 46(4): 643-651. |
[6] | Zhixiang Li,Danhui Zhu,Jiahuan Zhang. Machine Learning Based Crashworthiness Optimization with Structural Deformation Mode Control [J]. Automotive Engineering, 2024, 46(12): 2220-2231. |
[7] | Yubo Lian,Bengang Yi,Yingying Cui,Hongsheng Tian,Junfei Yan,Chen Cheng. Research on Integrated Design of Battery Pack and Car Body Based on Torsional Stiffness [J]. Automotive Engineering, 2023, 45(4): 647-653. |
[8] | Jiqing Chen,Zihan Li,Fengchong Lan,Xinping Jiang,Wei Pan,Jikai Chen. Real-Vehicle Battery Health State Estimation Based on Nonlinear Reduced-Dimensional IC Features [J]. Automotive Engineering, 2023, 45(2): 199-208. |
[9] | Gege Cui,Lü Chao,Jinghang Li,Zheyu Zhang,Guangming Xiong,Jianwei Gong. Data-Driven Personalized Scenario Risk Map Construction for Intelligent Vehicles [J]. Automotive Engineering, 2023, 45(2): 231-242. |
[10] | Junzhao Jiang,Wenhao Yang,Bin Peng,Ting Guo,Yekai Xu,Guozhuo Wang. Driving Range Prediction of Fuel Cell Vehicles Based on Energy Consumption Weighting Strategy [J]. Automotive Engineering, 2023, 45(12): 2357-2365. |
[11] | Qiang Song,Guanfeng Wang,He Shang,Nianzhong Zhang. Research on Handling Stability Control Strategy for Distributed Drive Electric Vehicle Based on Multi-parameter Control [J]. Automotive Engineering, 2023, 45(11): 2104-2112. |
[12] | Zhicheng He,Zejun Xie,Kan Liu,Enlin Zhou,Qian Tang,Yuanyi Huang. Collaborative Design Optimization of Pure Electric Vehicle Drivetrain and Motor Structure Parameters [J]. Automotive Engineering, 2023, 45(11): 2113-2122. |
[13] | Yubo Lian,Heping Ling,Junbin Wang,Hua Pan,Zhao Xie. A Real-time Thermal Runaway Detection Method of Power Battery Based on Guassian Mixed Model and Hidden Markov Model [J]. Automotive Engineering, 2023, 45(1): 139-146. |
[14] | Xiaoyan Peng,Xingfei Xing,Qingjia Cui,Jing Huang. Research on Driving Force Distribution Control Method of Distributed Electric Vehicles [J]. Automotive Engineering, 2022, 44(7): 1059-1068. |
[15] | Jian Zhao,Yaxin Li,Jing Tong,Bing Zhu,Weixiang Wu,Bohua Sun,Jiayi Han. Cross-Country Road Classification Method Based on Vehicle Dynamic Response Characteristics [J]. Automotive Engineering, 2022, 44(6): 909-918. |
|