Automotive Engineering ›› 2025, Vol. 47 ›› Issue (11): 2178-2186.doi: 10.19562/j.chinasae.qcgc.2025.11.012
Haonian Liu1,Xin Cai1,Michael Harenbrock2,Rui Lin1(
)
Received:2025-03-31
Revised:2025-05-19
Online:2025-11-25
Published:2025-11-28
Contact:
Rui Lin
E-mail:ruilin@tongji.edu.cn
Haonian Liu,Xin Cai,Michael Harenbrock,Rui Lin. Single-Atom Catalysts Empowering Next-Generation Fuel Cells: From Computational Screening to Application[J].Automotive Engineering, 2025, 47(11): 2178-2186.
| [1] | 付佩,周紫佳,兰利波,等.氢燃料电池汽车发动机关键技术研究现状及趋势展望[J].汽车工程学报,2022,12(4):388-398. FU Pei, ZHOU Zijia, LAN Libo, et al. Research status and development trends of key technologies for hydrogen fuel cell vehicle engines [J]. Journal of Automotive Engineering, 2022, 12(4): 388-398. |
| [2] | 奥海尔,车硕源,Colella,等.燃料电池基础: Fuel cell fundamentals[M].北京:电子工业出版社,2007. |
| AO Haier, CHE Shuoyuan, COLELLA W, et al. Fuel cell fundamentals[M]. Beijing:Electronics Industry Press, 2007. | |
| [3] | 吴钊颖, 罗夏爽, 罗柳轩, 等. 氢燃料电池阳极抗一氧化碳毒化催化剂的研究进展与展望[J]. 中国科学:技术科学, 2024, 54(4): 567-583. |
| WU Zhaoying, LUO Xiashuang, LUO Liuxuan, et al. Progress and prospects of anti-carbon monoxide poisoning catalysts for hydrogen fuel cell anodes[J]. Science in China: Technological Sciences, 2024, 54(4): 567-583. | |
| [4] | 张鹏, 李佳烨, 潘原. 单原子催化剂在氢燃料电池阴极氧还原反应中的研究进展[J]. 太阳能学报, 2022, 43(6): 306-320. |
| ZHANG Peng, LI Jiaye, PAN Yuan. Progress of single-atom catalysts in the cathodic oxygen reduction reaction of hydrogen fuel cells[J]. Journal of Solar Energy, 2022, 43(6): 306-320. | |
| [5] | 郝策, 刘自若, 刘炜, 等. 用于氧还原反应的碳基负载金属单原子催化剂研究进展[J]. 无机材料学报, 2021, 36(8): 820-834. |
| HAO Ce, LIU Ziruo, LIU Wei, et al. Progress of carbon-based metal-loaded single-atom catalysts for oxygen reduction reactions[J]. Journal of Inorganic Materials, 2021, 36(8): 820-834. | |
| [6] | SONG Z, LI J, ZHANG Q, et al. Progress and perspective of single-atom catalysts for membrane electrode assembly of fuel cells[J]. Carbon Energy, 2023, 5(7): 19. |
| [7] | TANG M, YANG T, YANG X, et al. Single-atom catalysts for proton exchange membrane fuel cell: anode anti-poisoning & characterization technology[J]. Electrochimica Acta, 2023, 446: 142120. |
| [8] | LIAO X, LU R, XIA L, et al. Density functional theory for electrocatalysis[J]. Energy & Environmental Materials, 2022, 5(1): 157-185. |
| [9] | 王甲一, 车春霞, 朱吉钦, 等. 基于结构描述符的催化剂理论设计研究进展[J]. 中国科学: 化学, 2024, 54(11): 2071-2082. |
| WANG Jiayi, CHE Chunxia, ZHU Jiqin, et al. Progress in theoretical design of catalysts based on structural descriptors[J]. Science in China: Chemistry, 2024, 54(11): 2071-2082. | |
| [10] | 竹涛, 韩一伟, 刘帅, 等. 单原子位点催化剂及其电催化应用研究进展[J]. 化工进展, 2022, 2: 41. |
| ZHU Tao, HAN Yiwei, LIU Shuai, et al. Progress of single-site catalysts and their electrocatalytic applications[J]. Advances in Chemical Engineering, 2022, 2: 41. | |
| [11] | TAMTAJI M, GAO H, HOSSAIN M D, et al. Machine learning for design principles for single atom catalysts towards electrochemical reactions[J]. Journal of Materials Chemistry A, 2022, 10(29): 15309-15331. |
| [12] | LOPES P P, FREITAS K S, TICIANELLI E A. CO tolerance of PEMFC anodes: mechanisms and electrode designs[J]. Electrocatalysis, 2010, 1(4): 200-212. |
| [13] | WEI K, WANG X, GE J. Towards bridging thermo/electrocatalytic CO oxidation: from nanoparticles to single atoms[J]. Chemical Society Reviews, 2024, 53(17): 8903-8948. |
| [14] | YANG Z, CHEN C, ZHAO Y, et al. Pt single atoms on CrN nanoparticles deliver outstanding activity and CO tolerance in the hydrogen oxidation reaction[J]. Advanced Materials, 2023, 35(1): 2208799. |
| [15] | HUANG Z, LU R, ZHANG Y, et al. A highly efficient pH-universal HOR catalyst with engineered electronic structures of single Pt sites by isolated Co atoms[J]. Advanced Functional Materials, 2023, 33(47): 2306333. |
| [16] | LIN J, ZHANG Z, QIU J, et al. Synergy between single atom and nanoclusters promotes power and CO tolerant performance in PEMFCs[J]. Chemical Engineering Journal, 2025, 506: 160156. |
| [17] | LI H, WANG X, GONG X, et al. “One stone three birds” of a synergetic effect between Pt single atoms and clusters makes an ideal anode catalyst for fuel cells[J]. Journal of Materials Chemistry A, 2023, 11(27): 14826-14832. |
| [18] | LONG D, LIU Y, PING X, et al. Constructing CO-immune water dissociation sites around Pt to achieve stable operation in high CO concentration environment[J]. Nature Communications, 2024, 15(1): 8105. |
| [19] | WANG X, LI Y, WANG Y, et al. Proton exchange membrane fuel cells powered with both CO and H2[J]. Proceedings of the National Academy of Sciences, 2021, 118(43): e2107332118. |
| [20] | YANG X, WANG Y, WANG X, et al. CO‐tolerant PEMFC anodes enabled by synergistic catalysis between iridium single‐atom sites and nanoparticles[J]. Angew. Chem. Int. Ed., 2021, 60(50): 26177-26183. |
| [21] | ZHU L, LI Z, YANG M, et al. An effective approach to enhance hydrogen evolution reaction and hydrogen oxidation reaction by Ni doping to MoO3[J]. Small, 2023, 19(49): 2303481. |
| [22] | WANG M, ZHANG H, LIU Y, et al. Research progress of precise structural regulation of single atom catalyst for accelerating electrocatalytic oxygen reduction reaction[J]. Journal of Energy Chemistry, 2022, 72: 56-72. |
| [23] | WANG F, YANG J, LI J, et al. Which is best for ORR: single atoms, nanoclusters, or coexistence?[J]. ACS Energy Letters, 2024, 9(1): 93-101. |
| [24] | LAI W H, ZHANG L, YAN Z, et al. Activating inert surface Pt single atoms via subsurface doping for oxygen reduction reaction[J]. Nano Letters, 2021, 21(19): 7970-7978. |
| [25] | LIU B, FENG R, BUSCH M, et al. Synergistic hybrid electrocatalysts of platinum alloy and single-atom platinum for an efficient and durable oxygen reduction reaction[J]. ACS Nano, 2022, 16(9): 14121-14133. |
| [26] | XIAO M, ZHU J, LI G, et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2019, 58(28): 9640-9645. |
| [27] | QIN J, LIU H, ZOU P, et al. Altering ligand fields in single-atom sites through second-shell anion modulation boosts the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2022, 144(5): 2197-2207. |
| [28] | MEHMOOD A, GONG M, JAOUEN F, et al. High loading of single atomic iron sites in Fe-NC oxygen reduction catalysts for proton exchange membrane fuel cells[J]. Nature Catalysis, 2022, 5(4): 311-323. |
| [29] | XU H, JIA H, LI H, et al. Dual carbon-hosted Co-N3 enabling unusual reaction pathway for efficient oxygen reduction reaction[J]. Applied Catalysis B: Environmental, 2021, 297: 120390. |
| [30] | YU Z, XU H, CHENG D. Design of single atom catalysts[J]. Advances in Physics: X, 2021, 6(1): 1905545. |
| [31] | LUO J, ZHANG Y, LU Z, et al. Oxygen-coordinated Cr single-atom catalyst for oxygen reduction reaction in proton exchange membrane fuel cells[J]. Angewandte Chemie International Edition, 2025, 137(17): 202500500. |
| [32] | BACK S, BAGHERZADEH MOSTAGHIMI A H, SIAHROSTAMI S. Enhancing oxygen reduction reaction activity using single atom catalyst supported on tantalum pentoxide[J]. ChemCatChem, 2022, 14(11): e202101763. |
| [33] | CHEN Z, ZHENG H, ZHANG J, et al. Covalent organic frameworks derived single-atom cobalt catalysts for boosting oxygen reduction reaction in rechargeable Zn-air batteries[J]. Journal of Colloid and Interface Science, 2024, 670: 103-113. |
| [34] | YANG Z, QIAN S, WANG Y, et al. Graphene benefits penta-nitrogen coordinated iron and catalytic stability of oxygen reduction reaction[J]. Chemical Engineering Journal, 2024, 496: 154141. |
| [35] | KULKARNI A, SIAHROSTAMI S, PATEL A, et al. Understanding catalytic activity trends in the oxygen reduction reaction[J]. Chemical Reviews, 2018, 118(5): 2302-2312. |
| [36] | CALLE-VALLEJO F, TYMOCZKO J, COLIC V, et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors[J]. Science, 2015, 350(6257): 185-189. |
| [37] | XIA G, TAN Y, CHEN X, et al. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene[J]. Advanced Materials, 2015, 27(39): 5981-5988. |
| [38] | JING H, ZHU P, ZHENG X, et al. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis[J]. Advanced Powder Materials, 2022, 1(1): 14-26. |
| [39] | SUN H, GAO L, LI Y, et al. Screening of single-atomic catalysts loaded on two-dimensional transition metal dichalcogenides for electrocatalytic oxygen reduction via high throughput ab initio calculations[J]. Journal of Colloid and Interface Science, 2025, 684: 251-261. |
| [40] | WANG S, MENG K, QIN L, et al. High-throughput screening of transition metal phthalocyanine electrocatalysts for oxygen reduction reactions[J]. International Journal of Hydrogen Energy, 2024, 88: 850-857. |
| [41] | LIN S, XU H, WANG Y, et al. Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning[J]. Journal of Materials Chemistry A, 2020, 8(11): 5663-5670. |
| [42] | ZHU Y, XU B, HAN C, et al. Potential correlation between thermal transport and catalytic performance in single metal atom cata |
| [1] | Lisheng Jin,Xin Zhao,Xianyi Xie,Hao Yang,Bo Lu,Mingliang Song,Baicang Guo,Yaoguang Cao. Intelligent Tire Wear Detection Method Based on an Embedded Sensor Array Within the Tire [J]. Automotive Engineering, 2025, 47(6): 1207-1218. |
| [2] | Junzhao Jiang,Yekai Xu,Xiaowen Zhang,Wenjun Wang. Research on Matching Evaluation Method of Tire and Vehicle Handling Stability Based on Subjective and Objective Fusion [J]. Automotive Engineering, 2025, 47(4): 776-787. |
| [3] | Sheng Zeng,Meiling Yue,Xintong Li. Study on Fault-Tolerant Control for Fuel Cell Air Supply Systems via Extended State Observer [J]. Automotive Engineering, 2025, 47(11): 2159-2167. |
| [4] | Juan Zeng,Hao Wang,Bo Xu,Hongchang Zhang. Research on the Driver's Hazard Perception State Recognition Model Based on Strength and Weakness Perception Design [J]. Automotive Engineering, 2024, 46(6): 995-1005. |
| [5] | Weidong Liu,Zongzhi Han,Zhenhai Gao,Yanhu Kang. Real-Time Pavement Recognition Technology Based on Intelligent Tire System [J]. Automotive Engineering, 2024, 46(4): 617-625. |
| [6] | Lin Chen,Manping He,Shuxiao Wu,Deqian Chen,Mingsi Zhao,Haihong Pan. Fast Clustering of Retired Lithium-ion Batteries Based on Adaptive Fuzzy C-means Algorithm [J]. Automotive Engineering, 2024, 46(4): 643-651. |
| [7] | Zhixiang Li,Danhui Zhu,Jiahuan Zhang. Machine Learning Based Crashworthiness Optimization with Structural Deformation Mode Control [J]. Automotive Engineering, 2024, 46(12): 2220-2231. |
| [8] | Jiqing Chen,Zihan Li,Fengchong Lan,Xinping Jiang,Wei Pan,Jikai Chen. Real-Vehicle Battery Health State Estimation Based on Nonlinear Reduced-Dimensional IC Features [J]. Automotive Engineering, 2023, 45(2): 199-208. |
| [9] | Gege Cui,Lü Chao,Jinghang Li,Zheyu Zhang,Guangming Xiong,Jianwei Gong. Data-Driven Personalized Scenario Risk Map Construction for Intelligent Vehicles [J]. Automotive Engineering, 2023, 45(2): 231-242. |
| [10] | Junzhao Jiang,Wenhao Yang,Bin Peng,Ting Guo,Yekai Xu,Guozhuo Wang. Driving Range Prediction of Fuel Cell Vehicles Based on Energy Consumption Weighting Strategy [J]. Automotive Engineering, 2023, 45(12): 2357-2365. |
| [11] | Zhicheng He,Zejun Xie,Kan Liu,Enlin Zhou,Qian Tang,Yuanyi Huang. Collaborative Design Optimization of Pure Electric Vehicle Drivetrain and Motor Structure Parameters [J]. Automotive Engineering, 2023, 45(11): 2113-2122. |
| [12] | Yubo Lian,Heping Ling,Junbin Wang,Hua Pan,Zhao Xie. A Real-time Thermal Runaway Detection Method of Power Battery Based on Guassian Mixed Model and Hidden Markov Model [J]. Automotive Engineering, 2023, 45(1): 139-146. |
| [13] | Jian Zhao,Yaxin Li,Jing Tong,Bing Zhu,Weixiang Wu,Bohua Sun,Jiayi Han. Cross-Country Road Classification Method Based on Vehicle Dynamic Response Characteristics [J]. Automotive Engineering, 2022, 44(6): 909-918. |
| [14] | Jing Huang,Yang Peng,Ye Huang,Xiaoyan Peng. Evaluation of Driver's Mental Load State Considering the Influence of Noisy Labels [J]. Automotive Engineering, 2022, 44(5): 771-777. |
| [15] | Jie Hu,Xueling Zhu,Chen He,Guangyu Yang. Prediction on Battery State of Health of Electric Vehicles Based on Real Vehicle Data [J]. Automotive Engineering, 2021, 43(9): 1291-1299. |
|
||