Automotive Engineering ›› 2022, Vol. 44 ›› Issue (5): 771-777.doi: 10.19562/j.chinasae.qcgc.2022.05.015
Special Issue: 车身设计&轻量化&安全专题2022年
Previous Articles Next Articles
Jing Huang(),Yang Peng,Ye Huang,Xiaoyan Peng
Received:
2021-10-09
Revised:
2021-12-17
Online:
2022-05-25
Published:
2022-05-27
Contact:
Jing Huang
E-mail:huangjing926@hnu.edu.cn
Jing Huang,Yang Peng,Ye Huang,Xiaoyan Peng. Evaluation of Driver's Mental Load State Considering the Influence of Noisy Labels[J].Automotive Engineering, 2022, 44(5): 771-777.
"
信号类型 | 特征类型 | 特征名称与解释 |
---|---|---|
ECG | 时域 | AVNN心跳间隔平均值;SDNN心跳间隔标准差;SDSD相邻RR间期差值序列的标准差; RMSSD相邻RR间期差值序列的均方根;CVSD连续差异的变异系数;CVNII变异系数; PNNI_50时间间隔大于50 ms的RR间期占所有间期的比重;Range_NNI最大和最小心跳间隔序列之间的差异; Mean_HR平均心跳;Max_HR最高心跳;Min_HR最低心跳;Std_HR心跳的标准差 |
频域 | LF低频频段能量;HF高频频段能量;LF_HF关于HF与LF的比值;TP频段内所含的总能量 | |
非线性 | SD1关于Poincaré 散点图短轴参数;SD2关于Poincaré 散点图长轴参数; SD1_SD2关于Poincaré 散点图短轴与长轴参数之比;CSI心脏交感指数;CVI迷走神经指数 | |
EEG | 时域 | EEG_mean脑电信号均值;EEG_std脑电信号标准差;EEG_ptp脑电信号峰峰值;EEG_max脑电信号最大值; EEG_min脑电信号最小值;EEG_cv脑电信号的功率;EEG_diff_mad脑电信号1阶差分绝对平均值; EEG_diff_nor_mad脑电信号归一化的1阶差分平均值;EEG_diff_2_mad脑电信号2阶差分绝对平均值; EEG_diff_2_nor_mad脑电信号归一化的2阶差分绝对平均值;EEG_power脑电信号的能量 |
频域 | EEG_θ:θ波段(4~8 Hz)功率谱能量;EEG_α:α波段(8~12 Hz)功率谱能量; EEG_δ:δ波段(1~3.5 Hz)功率谱能量;EEG_β:β波段(12~30 Hz)功率谱能量; EEG_γ:γ波段(30 ~ 50 Hz)功率谱能量 | |
非线性 | EEG_DE脑电信号微分熵;EEG_ApEn脑电信号近似熵;EEG_SampEn脑电信号样本熵; EEG_HFD脑电信号的Higuchi分形维数;EEG_LZCn脑电信号的L-Z复杂度 | |
EDA | 时域 | EDA_mean皮电信号均值;EDA_std皮电信号标准差;EDA_ptp皮电信号峰峰值;EDA_max皮电信号最大值; EDA_min皮电信号最小值;EDA_cv皮电信号的功率;EDA_diff_mad皮电信号1阶差分绝对平均值; EDA_diff_nor_mad皮电信号归一化的1阶差分平均值;EDA_diff_2_mad皮电信号2阶差分绝对平均值; EDA_diff_2_nor_mad皮电信号归一化的2阶差分绝对平均值;EDA_power皮电信号的能量 |
频域 | EDA_FD1皮电信号(0~0.1 Hz)的功率谱能量;EDA_FD2皮电信号(0.1~0.2Hz)的功率谱能量 | |
非线性 | EDA_DE皮电信号微分熵;EDA_ApEn皮电信号近似熵;EDA_SampEn皮电信号样本熵; EDA_HFD皮电信号的Higuchi分形维数;EDA_LZCn皮电信号的L-Z复杂度 |
"
序号 | 特征名称 | 卡方检验p值 | 序号 | 特征名称 | 卡方检验p值 |
---|---|---|---|---|---|
1 | AVNN | 0.413 0 | 12 | Std_HR | 0.037 5 |
2 | SDNN | 0.021 8 | 13 | LF | 0.028 6 |
3 | RMSSD | 0.083 6 | 14 | HF | 0.043 6 |
4 | SDSD | 0.086 8 | 15 | LF_HF | 0.562 7 |
5 | CVSD | 0.049 4 | 16 | TP | 0.032 0 |
6 | CVNII | 0.023 6 | 17 | SD1 | 0.088 3 |
7 | PNNI_50 | 0.044 5 | 18 | SD2 | 0.011 4 |
8 | Range_NNI | 0.035 4 | 19 | SD1_SD2 | 0.250 7 |
9 | Mean_HR | 0.538 9 | 20 | CSI | 0.250 7 |
10 | Max_HR | 0.959 9 | 21 | CVI | 0.049 5 |
11 | Min_HR | 0.037 7 |
"
噪声标签处理 | 算法模型 | ECG | EEG | EDA | ECG+EEG | ECG+EDA | EEG+EDA | all | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
准确率 | F1 分数 | 准确率 | F1 分数 | 准确率 | F1 分数 | 准确率 | F1 分数 | 准确率 | F1 分数 | 准确率 | F1 分数 | 准确率 | F1 分数 | ||
处理前 | SVM | 59.77 | 59.70 | 81.77 | 81.76 | 66.13 | 66.11 | 84.38 | 84.37 | 72.85 | 72.84 | 86.10 | 86.10 | 87.05 | 87.05 |
RF | 60.58 | 60.53 | 83.32 | 83.32 | 67.33 | 67.32 | 85.82 | 85.81 | 73.88 | 73.87 | 87.83 | 87.83 | 88.61 | 88.61 | |
DT | 59.76 | 59.76 | 82.79 | 82.74 | 66.15 | 66.12 | 85.30 | 85.30 | 72.88 | 72.86 | 87.32 | 87.34 | 88.15 | 88.15 | |
MLP | 59.91 | 59.87 | 81.90 | 81.85 | 65.60 | 65.55 | 84.91 | 84.91 | 72.35 | 72.32 | 86.84 | 86.85 | 87.90 | 87.90 | |
LR | 59.24 | 59.19 | 80.43 | 80.38 | 64.87 | 64.83 | 83.07 | 83.07 | 70.94 | 70.92 | 84.90 | 84.91 | 85.97 | 85.97 | |
KNN | 59.53 | 59.49 | 80.69 | 80.65 | 64.71 | 64.67 | 83.50 | 83.50 | 71.04 | 71.02 | 85.34 | 85.35 | 86.54 | 86.54 | |
处理后 | SVM | 61.74 | 61.53 | 87.13 | 87.13 | 69.50 | 69.43 | 89.85 | 89.84 | 76.43 | 76.38 | 91.78 | 91.78 | 93.13 | 93.13 |
RF | 62.52 | 62.38 | 88.06 | 88.06 | 70.56 | 70.51 | 90.70 | 90.69 | 77.29 | 77.25 | 92.58 | 92.58 | 93.80 | 93.80 | |
DT | 61.79 | 61.68 | 87.33 | 87.35 | 69.26 | 69.22 | 90.04 | 90.06 | 75.91 | 75.87 | 91.94 | 91.97 | 93.10 | 93.10 | |
MLP | 61.68 | 61.54 | 86.78 | 86.79 | 68.93 | 68.88 | 89.95 | 89.96 | 75.65 | 75.61 | 91.93 | 91.96 | 93.21 | 93.21 | |
LR | 61.01 | 60.89 | 85.61 | 85.62 | 68.30 | 68.26 | 88.58 | 88.60 | 74.41 | 74.37 | 90.54 | 90.56 | 91.91 | 91.92 | |
KNN | 61.26 | 61.14 | 85.75 | 85.76 | 68.15 | 68.11 | 88.89 | 88.90 | 74.57 | 74.53 | 90.84 | 90.86 | 92.28 | 92.29 |
1 | HWANG S L, YAU Y J, LIN Y T, et al. A mental workload predicator model for the design of pre alarm systems[C]. International Conference on Engineering Psychology and Cognitive Ergonomics(EPCE 2007), 2007. |
2 | DE WAARD D, STUDIECENTRUM V. The measurement of drivers’mental workload[J]. Dissertationsubrugnl,1996, 198 (39). |
3 | YERKES R M, DODSON J D. The relation of strength of stimulus to rapidity of habit-formation[J]. Journal of Comparative Neurology and Psychology, 1908, 18(5):459-482. |
4 | REID G B. The subjective workload assessment technique: a scaling procedure for measuring mental workload[M]. Elsevier Science Publishers, 1988. |
5 | HART S G, STAVELAND L E. Development of NASA-TLX (task load index): results of empirical and theoretical research[J]. Advances in Psychology, 1988, 52(6):139-183. |
6 | GRIER R A. How high is high? a meta-analysis of NASA-TLX global workload scores[C]. Human Factors & Ergonomics Society, 2015:1727-1731. |
7 | BRAARUD P Ø. An efficient screening technique for acceptable mental workload based on the NASA Task Load Index—development and application to control room validation[J]. International Journal of Industrial Ergonomics, 2020, 76. |
8 | RAHMAN N I A, DAWAL S Z M, YUSOFF N. Subjective responses of mental workload during real time driving: a pilot field study[J]. IOP Conference Series: Materials Science and Engineering, 2017, 210. |
9 | BENEDETTO S, PEDROTTI M, MININ L, et al. Driver workload and eye blink duration[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2011, 14( 3): 199-208. |
10 | ALMAHASNEH H, CHOOI W T, KAMEL N, et al. Deep in thought while driving: an EEG study on drivers' cognitive distraction[J]. Transportation Research Part F :Traffic Psychology & Behaviour, 2014, 26(pt.A):218-226. |
11 | FLUMERI G D, BORGHINI G, PIETRO A, et al. EEG-based mental workload neurometric to evaluate the impact of different traffic and road conditions in real driving settings[J]. Frontiers in Human Neuroscience, 2018, 12. |
12 | ABDRAHMAN N I,DAWAL S Z M, YUSOFF N. Driving mental workload and performance of ageing drivers[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 69:265-285. |
13 | HUANG Jing, LUO Xiong, PENG Xiaoyan. A novel classification method for a driver’s cognitive stress level by transferring interbeat intervals of the ECG signal to pictures[J]. Sensors, 2020, 20, 1340. doi:10.3390/s20051340. |
14 | TJOLLENG A, JUNG K, HONG W, et al. Classification of a driver's cognitive workload levels using artificial neural network on ECG signals[J]. Applied Ergonomics, 2017. |
15 | 黄晶,杨梦婷.考虑初始情绪的个性化驾驶负荷状态评价[J].中国公路学报,2021,34(1):167-176. |
HUANG Jing, YANG Mengting. Personalized driving load state evaluation considering initial emotions[J]. China Journal of Highway and Transport, 2021, 34(1): 167-176. | |
16 | CHIHARA T, KOBAYASHI F, SAKAMOTO J. Evaluation of mental workload during automobile driving using one-class support vector machine with eye movement data[J]. Applied Ergonomics, 2020,89. |
17 | EGOVNIK T, STOJMENOVA K, JAKUS G, et al. An analysis of the suitability of a low-cost eye tracker for assessing the cognitive load of drivers[J]. Applied Ergonomics, 2018, 68:1-11. |
18 | KRAMER A F. Physiological metrics of mental workload: a review of recent progress [M]. Navy Personnel Research and Development Center, 1990. |
19 | BARUA S, AHMED M U, BEGUM S. Towards intelligent data analytics: a case study in driver cognitive load classification[J]. Brain Sciences, 2020, 10(8):526. |
20 | HE D, DONMEZ B, LIU C C, et al. High cognitive load assessment in drivers through wireless electroencephalography and the validation of a modified N-back task[J].IEEE Transactions on Human-Machine Systems, 2019,49(4): 362-371.doi: 10.1109/THMS.2019.2917194. |
21 | FOY H J, PETER C. Mental workload is reflected in driver behaviour, physiology, eye movements and prefrontal cortex activation[J]. Applied Ergonomics, 2018, 73:90-99. |
22 | YAN Shengyuan, TRAN Cong Chi, WEI Yingying, et al. Driver's mental workload prediction model based on physiological indices[J]. International Journal of Occupational Safety and Ergonomics, 2017. |
23 | SUK K H, DAESUB Y, SOON S H, et al. Predicting the EEG level of a driver based on driving information[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, PP:1-11. |
24 | CHEN Z, WU C, ZHONG M, et al. Identification of common features of vehicle motion under drowsy/distracted driving: a case study in Wuhan, China[J]. Accident Analysis and Prevention, 2015, 81:251-259. |
25 | CHAKRABORTY B, NAKANO K. Automatic detection of driver's awareness with cognitive task from driving behavior[C]. 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2016. |
26 | MIYAKE S. Multivariate workload evaluation combining physiological and subjective measures[J]. International Journal of Psychophysiology, 2001, 40(3):233-238. |
27 | HAN J, LUO P, WANG X. Deep self-learning from noisy labels[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) 2019. |
28 | LI J, SOCHER R, HOI S. DivideMix: learning with noisy labels as semi-supervised learning[J]. arxiv,2020. |
29 | 欧阳全会,陈定方.高速公路交通流状况自动检测模拟器的研究与试验[J].武汉理工大学学报(交通科学与工程版),2004(3):416-419. |
OUYANG Quanhui, CHEN Dingfang. Research and experiment on the automatic detection simulator for expressway traffic flow conditions [J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2004(3): 416-419. | |
30 | 徐良, 陈日清, 王祥,等. 基于零相位的心电信号基线漂移滤波方法的实时性改进[J]. 中国医药导刊, 2015, 17(S1):31-35. |
XU Liang, CHEN Riqing, WANG Xiang, et al. Real-time improvement of the baseline drift filtering method of ECG signal based on zero phase[J]. China Medical Guide, 2015, 17(S1): 31-35. | |
31 | 史玉君. 基于经验模态分解的眼电伪迹去除方法的研究[D].兰州:兰州大学,2015. |
SHI Yujun. Research on electrooculogram artifact removal method based on empirical mode decomposition[D]. Lanzhou :Lanzhou University, 2015. | |
32 | 孙凯. 基于混合生理信号处理的情绪分类技术研究[D].哈尔滨:哈尔滨工业大学,2020. |
33 | 翟晓雪,张皓.非线性动力学分析方法在神经康复领域中的应用进展[J].中国康复医学杂志,2019,34(4):483-486. |
34 | RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252. |
35 | KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[J]. Handbook of Systemic Autoimmune Diseases, 2009, 1(4). |
36 | NORTHCUTT C G, JIANG L, CHUANG I L. Confident learning: estimating uncertainty in dataset labels[J]. arxiv,2019. |
[1] | Jiqing Chen,Zihan Li,Fengchong Lan,Xinping Jiang,Wei Pan,Jikai Chen. Real-Vehicle Battery Health State Estimation Based on Nonlinear Reduced-Dimensional IC Features [J]. Automotive Engineering, 2023, 45(2): 199-208. |
[2] | Gege Cui,Lü Chao,Jinghang Li,Zheyu Zhang,Guangming Xiong,Jianwei Gong. Data-Driven Personalized Scenario Risk Map Construction for Intelligent Vehicles [J]. Automotive Engineering, 2023, 45(2): 231-242. |
[3] | Junzhao Jiang,Wenhao Yang,Bin Peng,Ting Guo,Yekai Xu,Guozhuo Wang. Driving Range Prediction of Fuel Cell Vehicles Based on Energy Consumption Weighting Strategy [J]. Automotive Engineering, 2023, 45(12): 2357-2365. |
[4] | Zhicheng He,Zejun Xie,Kan Liu,Enlin Zhou,Qian Tang,Yuanyi Huang. Collaborative Design Optimization of Pure Electric Vehicle Drivetrain and Motor Structure Parameters [J]. Automotive Engineering, 2023, 45(11): 2113-2122. |
[5] | Yubo Lian,Heping Ling,Junbin Wang,Hua Pan,Zhao Xie. A Real-time Thermal Runaway Detection Method of Power Battery Based on Guassian Mixed Model and Hidden Markov Model [J]. Automotive Engineering, 2023, 45(1): 139-146. |
[6] | Jian Zhao,Yaxin Li,Jing Tong,Bing Zhu,Weixiang Wu,Bohua Sun,Jiayi Han. Cross-Country Road Classification Method Based on Vehicle Dynamic Response Characteristics [J]. Automotive Engineering, 2022, 44(6): 909-918. |
[7] | Jie Hu,Xueling Zhu,Chen He,Guangyu Yang. Prediction on Battery State of Health of Electric Vehicles Based on Real Vehicle Data [J]. Automotive Engineering, 2021, 43(9): 1291-1299. |
[8] | Yizhan Xie,Ximing Cheng. Review of State Estimation of Lithium-ion Battery with Machine Learning [J]. Automotive Engineering, 2021, 43(11): 1720-1729. |
[9] | Jie Hu,Zhiwen Gao. A Data-driven SOC Prediction Scheme for Traction Battery in Electric Vehicles [J]. Automotive Engineering, 2021, 43(1): 1-9. |
[10] | Yan Shixuan, Zhu Ping, Liu Zhao. Research on Vehicle Fault Prediction Scheme Based on Improved LightGBM Model [J]. Automotive Engineering, 2020, 42(6): 815-819. |