Automotive Engineering ›› 2025, Vol. 47 ›› Issue (7): 1277-1284.doi: 10.19562/j.chinasae.qcgc.2025.07.005
Nan Li(
),Xueyi Bai,Dou Yang,Guijing Li,Shihui Ma
Received:2024-08-07
Revised:2024-11-02
Online:2025-07-25
Published:2025-07-18
Contact:
Nan Li
E-mail:linan@ysu.edu.cn
Nan Li,Xueyi Bai,Dou Yang,Guijing Li,Shihui Ma. Morphology 3D Performance Simulation and Structural Optimization of PEMFC Metal Foam Flow Field[J].Automotive Engineering, 2025, 47(7): 1277-1284.
"
| 参数 | 数值 |
|---|---|
| MEA长度/mm | 8 |
| MEA宽度/mm | 3.2 |
| BP高度/mm | 0.55 |
| BP宽度/mm | 3 |
| 直通道高度/mm | 0.4 |
| 直通道宽度/mm | 0.5 |
| 肋宽度/mm | 0.5 |
| GDL厚度/mm | 0.12 |
| CL厚度/mm | 0.01 |
| PEM厚度/mm | 2.5×10-2 |
| GDL孔隙度 | 0.4 |
| CL孔隙度 | 0.4 |
| GDL渗透率/m2 | 1.18×10-11 |
| 气体扩散层电导率/(S·m-1) | 222 |
| 质子交换膜电导率/(S·m-1) | 9.825 |
| 加湿温度/K | 301.15 |
| 阳极化学计量比 | 1.5 |
| 阴极化学计量比 | 2.2 |
| 参考压力/Pa | 1.01×105 |
| 开路电压/V | 1 |
| 工作温度/K | 353.15 |
| 阳极参考交换电流密度/(A·m-2) | 1×102 |
| 阴极参考交换电流密度/(A·m-2) | 1×10-2 |
| 入口水的摩尔分数 | 0.037 32 |
| 入口氢的摩尔分数 | 0.962 68 |
| 入口氧的摩尔分数 | 0.202 16 |
| 氢气质量流率/(kg·s-1) | 3.9798×10-9 |
| 氮气质量流率/(kg·s-1) | 1.5371×10-7 |
| 氧气质量流率/(kg·s-1) | 4.67011×10-8 |
| 阳极总质量流率/(kg·s-1) | 5.3684×10-9 |
| 阴极总质量流率/(kg·s-1) | 2.0526×10-7 |
| [1] | ZHU X, ZHOU W, ZHU Z, et al. Performance analysis of proton exchange membrane fuel cells with traveling-wave flow fields based on Grey-relational theory[J]. International Journal of Hydrogen Energy, 2023, 48(2): 740-756. |
| [2] | GONG F, YANG X L, ZHANG X, et al. The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell[J]. Appl Energy, 2023, 329: 120276. |
| [3] | 刘英杰, 陈奔. 质子交换膜燃料电池流场强化传质研究进展[J]. 汽车工程, 2021, 43(6): 799-807,814. |
| LIU Y J, CHEN B. Progress of flow field enhanced mass transfer in proton exchange membrane fuel cells[J]. Automotive Engineering, 2021, 43(6): 799-807,814. | |
| [4] | AFSHARI E, ZIAEI-RAD M, SHARIATI Z. A study on using metal foam as coolant fluid distributor in the polymer electrolyte membrane fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(3): 1902-1912. |
| [5] | KUMAR A, REDDY R G. Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates[J]. Power Sources 2003, 114(1): 54-62. |
| [6] | HUO S, COOPER N J, SMITH T L, et al. Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor[J]. Applied Energy, 2017, 203: 101-114. |
| [7] | KANG D G, LEE D K, CHOI J M, et al. Study on the metal foam flow field with porosity gradient in the polymer electrolyte membrane fuel cell[J]. Renewable Energy, 2020, 156: 931-941. |
| [8] | CHEN X, YANG C, SUN Y, et al. Water management and structure optimization study of nickel metal foam as flow distributors in proton exchange membrane fuel cell[J]. Applied Energy, 2022, 309: 118448. |
| [9] | ZHANG G, JIAO K. Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model[J]. Energy Conversion and Management, 2018, 176: 409-421. |
| [10] | CARTON J G, OLABI A G. Representative model and flow characteristics of open pore cellular foam and potential use in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2015, 40(16): 5726-5738. |
| [11] | CARTON J G, OLABI A G. Three-dimensional proton exchange membrane fuel cell model: comparison of double channel and open pore cellular foam flow plates[J]. Energy, 2017, 136: 185-195. |
| [12] | TAO X, SUN K, CHEN Z W T, et al. Two-phase flow in porous metal foam flow fields of PEM fuel cells[J]. Chemical Engineering Science, 2023, 282: 119270. |
| [13] | JO A, AHN S, OH K, et al. Effects of metal foam properties on flow and water distribution in polymer electrolyte fuel cells (PEFCs)[J]. International Journal of Hydrogen Energy, 2018, 43(30): 14034-14046. |
| [14] | LIM K, VAZ N, LEE J, et al. Advantages and disadvantages of various cathode flow field designs for a polymer electrolyte membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120497. |
| [15] | ZHANG G, BAO Z, XIE B, et al. Three-dimensional multi-phase simulation of PEM fuel cell considering the full morphology of metal foam flow field[J]. International Journal of Hydrogen Energy, 2021, 46(3): 2978-2989. |
| [16] | LI Z X, BAI F, HE P, et al. Three-dimensional performance simulation of PEMFC of metal foam flow plate reconstructed with improved full morphology[J]. International Journal of Hydrogen Energy, 2023, 48: 27778-27789. |
| [17] | BAO Z, NIU Z, JIAO K. Numerical simulation for metal foam two-phase flow field of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6229-6244. |
| [18] | ZHANG S Y, QU Z G, XU H T, et al. A numerical study on the performance of PEMFC with wedge-shaped fins in the cathode channel[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27700-27708. |
| [19] | CHEN X, YU Z K, YANG C, et al. Performance investigation on a novel 3D wave flow channel design for PEMFC[J]. Hydrogen Energy, 2021, 46: 11127-11139. |
| [20] | 喻强,汪宏斌,陈卓.相对湿度对PEMFC膜电极影响的数值模拟[J].太阳能学报, 2021, 42(12): 343-348. |
| YU Q, WANG H B, CHEN Z. Numerical simulation of the effect of relative humidity on PEMFC membrane electrodes[J]. Journal of Solar Energy, 2021, 42(12): 343-348. | |
| [21] | 焦魁, 王博文, 杜青,等. 质子交换膜燃料电池水热管理[M]. 北京: 科学出版社, 2020. |
| JIAO K, WANG B W, DU Q, et al. Hydrothermal management of proton exchange membrane fuel cells[M]. Beijing: Science Press, 2020. | |
| [22] | BERNING T, DJILALI N. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell—a parametric study[J]. Journal of Power Sources, 2003, 124(2): 440-452. |
| [23] | CATLIM G, ADVANI S G, PRASAD A K. Optimization of polymer electrolyte membrane fuel cell flow channels using a genetic algorithm[J]. Journal of Power Sources, 2011, 196(22): 9407-9418. |
| [24] | ANYANWUI S, HOU Y, XI F,et al. Comparative analysis of two-phase flow in sinusoidal channel of different geometric configurations with application to PEMFC[J]. Hydrogen Energy, 2019, 44: 13807-13819. |
| [25] | SEZGIN B, CAGLAYAN D G, DEVRIM Y, et al. Modeling and sensitivity analysis of high temperature PEM fuel cells by using Comsol Multiphysics[J]. International Journal of Hydrogen Energy, 2016, 41(23): 10001-10009. |
| [26] | FOURIE J G, PLESSIS J P D. Pressure drop modelling in cellular metallic foams[J]. Chemical Engineering Science, 2002, 57(14): 2781-2789. |
| [27] | OZMAT B, LEYDA B, BENSON B. Thermal applications of open-cell metal foams[J]. Advanced Manufacturing Processes, 2004, 19(5): 839-862. |
| [28] | 李姣, 郭航, 叶芳. 气体扩散层结构对 PEMFC 性能影响二维数值模拟[J]. 热科学与技术, 2023, 22(4): 341-350. |
| LI J, GUO H, YE F. Two-dimensional numerical simulation of the effect of gas diffusion layer structure on PEMFC performance[J]. Thermal Science and Technology, 2023, 22(4): 341-350. |
| [1] | Jixuan Lu,Weibo Zheng,Xiang Li,Qianqian Wang,Bing Li,Pingwen Ming. Overview of Research Progress on Hydrogen Permeation in Proton Exchange Membrane Fuel Cells and Mitigation Measures [J]. Automotive Engineering, 2025, 47(7): 1238-1257. |
| [2] | Guangwei Li,Xue Han,Danmin Xing,Pingwen Ming. Research on Effect of Catalyst Layer/Microporous Layer Interface Design on the PEMFC [J]. Automotive Engineering, 2025, 47(1): 77-84. |
| [3] | Lihai Ren,Lili Chen,Zhenhua Yang,Chengyue Jiang,Qingjiang Zhao,Xi Liu,Yuanzhi Hu. Research on PEMFC Mechanical-Electrical Coupling Modeling and Electrical Response Under Impact Load [J]. Automotive Engineering, 2025, 47(1): 96-106. |
| [4] | Zhigang Yang,Yujing Li,Chao Xia,Mengjia Wang,Lei Yu. A High Time-Resolution Reconstruction on the Automotive Turbulent Wake Based on LSTM-POD [J]. Automotive Engineering, 2024, 46(7): 1302-1313. |
| [5] | Yuxiang Peng,Qinghua Yu,Rui Ao,Fuwu Yan. Performance Analysis of Elastocaloric Cooler Driven by Waste Heat from Fuel Cell [J]. Automotive Engineering, 2024, 46(4): 662-668. |
| [6] | Xiang Xu,Yuan Wang,Yilong Yu,Dan Wang,Wei Wang,Junfang Xu,Lijun Zhang. Numerical Simulation and Experimental Research on the Flow Field of Automobile in Environmental Wind Tunnel [J]. Automotive Engineering, 2024, 46(3): 536-545. |
| [7] | Xinjie Yuan,Fang Liu,Zhongjun Hou. Self-adaptive Porous Structure Detection of the Catalyst Layer in PEMFCs Based on GA-PSO-Otsu Algorithm [J]. Automotive Engineering, 2023, 45(9): 1702-1709. |
| [8] | Wanteng Wang,Nan Li,Xueyi Bai,Dou Yang,Hang Li,Guijing Li. Research on Effect of Gas Diffusion Layer Layered Design on the Performance of PEMFC Stack [J]. Automotive Engineering, 2023, 45(9): 1720-1727. |
| [9] | Wei Zhang,Long Jiang,Liping Meng,Zehong Li,Zhaohui Chen,Zhijun Li. Influence of Ash Plug Distribution in DPF on Particle Trapping Characteristics [J]. Automotive Engineering, 2023, 45(3): 438-450. |
| [10] | Lü Ping,Xin Sun,Youwei Xu,Bao Zhang,Jiahui Xu,Danmin Xing. An Experimental Study on Low Temperature Shutdown and Purging of Vehicle Fuel Cell Stack [J]. Automotive Engineering, 2023, 45(11): 2123-2129. |
| [11] | Jiqing Chen,Changjing Zeng,Yunjiao Zhou,Fengchong Lan,Qingshan Liu. Flow Field Structure Optimization and Performance Improvement with Pentagon Baffle for Proton Exchange Membrane Fuel Cell [J]. Automotive Engineering, 2023, 45(10): 1862-1875. |
| [12] | Yaxiong Wang,Keke Wang,Shunbin Zhong,Hongwen He,Xuechao Wang. Research Progress on Durability Enhancement-oriented Electric Control Technology of Automotive Fuel Cell System [J]. Automotive Engineering, 2022, 44(4): 545-559. |
| [13] | Xudong Liu,Xuezhe Tao Jianjian Wei. Analysis on the Key Influencing Factors of Distributed Current Measurement in PEMFC [J]. Automotive Engineering, 2021, 43(8): 1152-1160. |
| [14] | Yingjie Liu,Ben Chen. Research Progress in Mass Transfer Enhancement of Flow Field in Proton Exchange Membrane Fuel Cell [J]. Automotive Engineering, 2021, 43(6): 799-807. |
| [15] | Dai Wentong, Li Qiliang, Li Zhuoming, Chang Yifei, Yang Zhigang. Investigation into Bonnet Aerodynamic Characteristics of Follower Vehicle in Two-vehicle Platoon at Different Reynolds Numbers [J]. Automotive Engineering, 2020, 42(5): 593-599. |
|
||