Automotive Engineering ›› 2022, Vol. 44 ›› Issue (6): 909-918.doi: 10.19562/j.chinasae.qcgc.2022.06.013
Special Issue: 底盘&动力学&整车性能专题2022年
Previous Articles Next Articles
Jian Zhao1,Yaxin Li1,Jing Tong1,Bing Zhu1(),Weixiang Wu2,Bohua Sun1,Jiayi Han1
Received:
2022-01-14
Revised:
2022-02-21
Online:
2022-06-25
Published:
2022-06-28
Contact:
Bing Zhu
E-mail:zhubing@jlu.edu.cn
Jian Zhao,Yaxin Li,Jing Tong,Bing Zhu,Weixiang Wu,Bohua Sun,Jiayi Han. Cross-Country Road Classification Method Based on Vehicle Dynamic Response Characteristics[J].Automotive Engineering, 2022, 44(6): 909-918.
"
参数设置 | 沙地 | 土路 | 水泥 | 雪地 | 总体 |
---|---|---|---|---|---|
Q=2,N=10 | 66.5% | 95.7% | 64.4% | 76.1% | 74.4% |
Q=4,N=10 | 73.0% | 98.4% | 56.4% | 80.1% | 77.8% |
Q=6,N=10 | 78.2% | 97.4% | 72.6% | 74.3% | 75.8% |
Q=8,N=5 | 80.4% | 96.9% | 87.4% | 75.9% | 83.8% |
Q=8,N=8 | 80.3% | 98.0% | 80.3% | 76.5% | 83.2% |
Q=8,N=9 | 81.4% | 97.1% | 80.8% | 78.9% | 84.1% |
Q=8,N=10 | 82.2% | 97.5% | 87.1% | 74.0% | 84.3% |
Q=8,N=12 | 81.3% | 97.3% | 82.0% | 77.6% | 83.9% |
Q=8,N=15 | 82.8% | 97.9% | 82.2% | 75.2% | 84.0% |
Q=8,N=20 | 78.6% | 97.5% | 85.7% | 76.1% | 82.9% |
Q=10,N=10 | 82.3% | 97.1% | 88.2% | 75.6% | 84.7% |
Q=12,N=10 | 87.5% | 96.6% | 93.2% | 73.6% | 87.1% |
Q=15,N=10 | 89.1% | 96.0% | 94.3% | 75.0% | 88.2% |
Q=20,N=10 | 91.1% | 95.1% | 94.8% | 75.9% | 89.2% |
Q=25,N=10 | 94.9% | 73.1% | |||
Q=28,N=10 | 0.00% | 0.00% | 41.0% |
1 | 程庐山. 基于深度学习的路面状态图像识别技术研究[D].上海: 上海工程技术大学,2020. |
CHENG L. Road surface condition classification using deep learning[D]. Shanghai: Shanghai University of Engineering Science,2020. | |
2 | 刘汉儒. 基于激光雷达的智能汽车前方不平路面识别方法[D].哈尔滨: 哈尔滨工业大学,2019. |
LIU H. Lidar based recognition of uneven road surface in front of intelligent vehicle[D]. Harbin:Harbin Institute of Technology,2019. | |
3 | VALADA A, BURGARD W. Deep spatiotemporal models for robust proprioceptive terrain classification[J]. The International Journal of Robotics Research, 2017, 36(13-14): 1521-1539. |
4 | 脱王捷. 主动安全相关的路面状况识别方法研究[D].重庆: 重庆理工大学,2020. |
TUO W. Recognition method of road condition for active safety system[D]. Chongqing: Chongqing University of Technology,2020. | |
5 | OTSU K, ONO M, FUCHS T J, et al. Autonomous terrain classification with co-and self-training approach[J]. IEEE Robotics and Automation Letters, 2016, 1(2): 814-819. |
6 | PADARTHY M, HEYNS E. Identification and classification of slippery winter road conditions using commonly available vehicle variables[J]. Transportation Research Record, 2019, 2673(2): 60-70. |
7 | KHALEGHIAN S, TAHERI S. Terrain classification using intelligent tire[J]. Journal of Terramechanics, 2017, 71: 15-24. |
8 | 武维祥. 基于SUV行驶特征的软路面识别算法研究[D].长春:吉林大学,2019. |
WU W. Research on soft terrain identification algorithm based on the driving characteristics of SUV[D]. Changchun:Jilin University,2019. | |
9 | GORGES C, ÖZTÜRK K, LIEBICH R. Road classification for two-wheeled vehicles[J]. Vehicle System Dynamics, 2018, 56(8): 1289-1314. |
10 | 王岩,梁冠群,危银涛.基于支持向量机的智能轮胎路面辨识算法[J].汽车工程,2020,42(12):1671-1678. |
WANG Y, LIANG G, WEI Y. Road identification algorithm of intelligent tire based on support vector machine[J]. Automotive Engineering, 2020, 42(12): 1671-1678. | |
11 | 单添垚. 基于多源信息融合的不平路类型识别策略研究[D].长春:吉林大学,2018. |
SHAN T. Research on the type of rough road identification strategy based on the multi-information fusion[D]. Changchun:Jilin University, 2018. | |
12 | MASINO J, THUMM J, LEVASSEUR G, et al. Characterization of road condition with data mining based on measured kinematic vehicle parameters[J]. Journal of Advanced Transportation, 2018, 2018. |
13 | 李力. 智能汽车的路面类型认知[D].长春:吉林大学,2019. |
LI L. Road type cognition of intelligent vehicle[D]. Changchun:Jilin University, 2019. | |
14 | YANG F, LIN G, ZHANG W. Terrain classification for terrain parameter estimation based on a dynamic testing system[J]. Sensor Review, 2015. |
15 | 梁冠群,赵通,王岩,等.基于LSTM网络的路面不平度辨识方法[J].汽车工程,2021,43(4):509-517. |
LIANG G, ZHAO T, WANG Y, et al. Road unevenness identification based on LSTM network[J]. Automotive Engineering, 2021, 43(4): 509-517. | |
16 | LI Z, YU W, CUI X. Online classification of road roughness conditions with vehicle unsprung mass acceleration by sliding time window[J]. Shock and Vibration, 2018, 2018. |
17 | WARD C C, IAGNEMMA K. Speed-independent vibration-based terrain classification for passenger vehicles[J]. Vehicle System Dynamics, 2009, 47(9): 1095-1113. |
18 | WANG S, KODAGODA S, SHI L, et al. Road-terrain classification for land vehicles: employing an acceleration-based approach[J]. IEEE Vehicular Technology Magazine, 2017, 12(3): 34-41. |
19 | QIN Y, WANG Z, XIANG C, et al. Speed independent road classification strategy based on vehicle response: theory and experimental validation[J]. Mechanical Systems and Signal Processing, 2019, 117: 653-666. |
20 | 庄继德. 地面车辆系统分析与设计[M]. 北京:机械工业出版社, 1989. |
ZHUANG J. Analysis and design of terrain vehicle[M]. Beijing:China Machine Press, 1989. | |
21 | 赵丰. 基于路面感知的车辆智能悬架控制策略研究[D]. 北京:北京理工大学, 2016. |
ZHAO F. Control strategy of intelligent vehicle suspension system based on the perception of the road [D]. Beijing:Beijing Institute of Technology, 2016. | |
22 | 余志生.汽车理论[M].北京:机械工业出版社,2009. |
YU Z. Automobile theory[M]. Beijing:China Machine Press, 2009. | |
23 | ANZAI Y. Pattern recognition and machine learning[M]. Elsevier, 2012. |
24 | GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. MIT Press, 2016. |
25 | ZHU B, HAN J, ZHAO J, et al. Combined hierarchical learning framework for personalized automatic lane-changing[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. |
26 | NORVIG P. Artificial intelligence: a modern approach [M]. 3版.北京:人民邮电出版社, 2010. |
NORVIG P. Artificial intelligence: a modern approach [M]. 3rd ed.Beijing:Posts and Telecom Press, 2010. |
[1] | Jiqing Chen,Zihan Li,Fengchong Lan,Xinping Jiang,Wei Pan,Jikai Chen. Real-Vehicle Battery Health State Estimation Based on Nonlinear Reduced-Dimensional IC Features [J]. Automotive Engineering, 2023, 45(2): 199-208. |
[2] | Gege Cui,Lü Chao,Jinghang Li,Zheyu Zhang,Guangming Xiong,Jianwei Gong. Data-Driven Personalized Scenario Risk Map Construction for Intelligent Vehicles [J]. Automotive Engineering, 2023, 45(2): 231-242. |
[3] | Junzhao Jiang,Wenhao Yang,Bin Peng,Ting Guo,Yekai Xu,Guozhuo Wang. Driving Range Prediction of Fuel Cell Vehicles Based on Energy Consumption Weighting Strategy [J]. Automotive Engineering, 2023, 45(12): 2357-2365. |
[4] | Zhicheng He,Zejun Xie,Kan Liu,Enlin Zhou,Qian Tang,Yuanyi Huang. Collaborative Design Optimization of Pure Electric Vehicle Drivetrain and Motor Structure Parameters [J]. Automotive Engineering, 2023, 45(11): 2113-2122. |
[5] | Yubo Lian,Heping Ling,Junbin Wang,Hua Pan,Zhao Xie. A Real-time Thermal Runaway Detection Method of Power Battery Based on Guassian Mixed Model and Hidden Markov Model [J]. Automotive Engineering, 2023, 45(1): 139-146. |
[6] | Jing Huang,Yang Peng,Ye Huang,Xiaoyan Peng. Evaluation of Driver's Mental Load State Considering the Influence of Noisy Labels [J]. Automotive Engineering, 2022, 44(5): 771-777. |
[7] | Jie Hu,Xueling Zhu,Chen He,Guangyu Yang. Prediction on Battery State of Health of Electric Vehicles Based on Real Vehicle Data [J]. Automotive Engineering, 2021, 43(9): 1291-1299. |
[8] | Yizhan Xie,Ximing Cheng. Review of State Estimation of Lithium-ion Battery with Machine Learning [J]. Automotive Engineering, 2021, 43(11): 1720-1729. |
[9] | Jie Hu,Zhiwen Gao. A Data-driven SOC Prediction Scheme for Traction Battery in Electric Vehicles [J]. Automotive Engineering, 2021, 43(1): 1-9. |
[10] | Yan Shixuan, Zhu Ping, Liu Zhao. Research on Vehicle Fault Prediction Scheme Based on Improved LightGBM Model [J]. Automotive Engineering, 2020, 42(6): 815-819. |