Automotive Engineering ›› 2023, Vol. 45 ›› Issue (4): 627-636.doi: 10.19562/j.chinasae.qcgc.2023.04.011
Special Issue: 新能源汽车技术-电驱动&能量管理2023年
Previous Articles Next Articles
Chun Wang1,Tao Tang1,Yongzhi Zhang2()
Received:
2022-10-23
Revised:
2022-12-01
Online:
2023-04-25
Published:
2023-04-19
Contact:
Yongzhi Zhang
E-mail:yzzhangbit@gmail.com
Chun Wang,Tao Tang,Yongzhi Zhang. A Supercapacitor SOC Estimation Method Based on Weighted Fusion Considering Ambient Temperature Variation[J].Automotive Engineering, 2023, 45(4): 627-636.
"
温度/℃ | SOC估计 方法 | MAX/% | MAE/% | RMSE/% |
---|---|---|---|---|
-10 | EKF | 0.821 | 0.353 | 0.387 |
UKF | 1.154 | 0.330 | 0.375 | |
AEKF | 0.777 | 0.353 | 0.388 | |
FEWF | 0.731 | 0.327 | 0.364 | |
AWF | 0.729 | 0.330 | 0.366 | |
RNWF | 0.731 | 0.329 | 0.365 | |
10 | EKF | 0.625 | 0.221 | 0.259 |
UKF | 1.335 | 0.206 | 0.264 | |
AEKF | 0.615 | 0.219 | 0.258 | |
FEWF | 0.696 | 0.205 | 0.242 | |
AWF | 0.682 | 0.207 | 0.243 | |
RNWF | 0.689 | 0.206 | 0.243 | |
25 | EKF | 0.982 | 0.344 | 0.440 |
UKF | 2.081 | 0.376 | 0.477 | |
AEKF | 1.041 | 0.344 | 0.438 | |
FEWF | 0.942 | 0.337 | 0.413 | |
AWF | 0.944 | 0.327 | 0.408 | |
RNWF | 0.943 | 0.331 | 0.410 | |
40 | EKF | 1.441 | 0.770 | 0.884 |
UKF | 3.232 | 0.659 | 0.843 | |
AEKF | 1.603 | 0.782 | 0.896 | |
FEWF | 1.642 | 0.613 | 0.723 | |
AWF | 1.575 | 0.672 | 0.776 | |
RNWF | 1.709 | 0.646 | 0.755 |
1 | 来鑫,李云飞,郑岳久,等.基于SOC-OCV优化曲线与EKF的锂离子电池荷电状态全局估计[J].汽车工程,2021,43(1):19-26. |
LAI X, LI Y F, ZHENG Y J. et al. An overall estimation of state‑of‑charge based on SOC‑OCV optimization curve and EKF for lithium‑ion battery[J]. Automotive Engineering, 2021, 43(1): 19-26. | |
2 | WANG Z, FENG G, ZHEN D, et al. A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles[J]. Energy Reports, 2021, 7: 5141-5161. |
3 | LI Z, HUANG J, LIAW B Y, et al. On state-of-charge determination for lithium-ion batteries[J]. Journal of Power Sources, 2017, 348: 281-301. |
4 | QAYS M O, BUSWING Y, HOSSAIN M L, et al. Recent progress and future trends on the state of charge estimation methods to improve battery-storage efficiency: a review[J]. CSEE Journal of Power and Energy Systems, 2020, 8(1): 105-114. |
5 | XIONG R, CAO J, YU Q, et al. Critical review on the battery state of charge estimation methods for electric vehicles[J]. IEEE Access, 2017, 6: 1832-1843. |
6 | HOW D N T, HANNAN M A, LIPU M S H, et al. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: a review[J]. IEEE Access, 2019, 7: 136116-136136. |
7 | 熊瑞.动力电池管理系统核心算法(第2版)[M].北京:机械工业出版社,2021. |
8 | ZHANG Z, JIANG L, ZHANG L, et al. State-of-charge estimation of lithium-ion battery pack by using an adaptive extended Kalman filter for electric vehicles[J]. Journal of Energy Storage, 2021, 37: 102457. |
9 | 刘兴涛,李坤,武骥,等. 基于EKF-SVM算法的动力电池SOC估计[J]. 汽车工程,2020,42(11):1522-1528,1544. |
LIU X T, LI K, WU J, el al. State of charge estimation for traction battery based on EKF-SVM algorithm[J]. Automotive Engineering, 2020, 42(11): 1522-1528,1544. | |
10 | SHU X, LI G, SHEN J, et al. An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation[J]. Energy, 2020, 207: 118262. |
11 | LI J, YE M, GAO K, et al. A novel battery state estimation model based on unscented Kalman filter[J]. Ionics, 2021, 27(6): 2673-2683. |
12 | TIAN Y, XIA B, SUN W, et al. A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter[J]. Journal of Power Sources, 2014, 270: 619-626. |
13 | LI W, LUO M, TAN Y, et al. Online parameters identification and state of charge estimation for lithium-ion battery using adaptive cubature Kalman filter[J]. World Electric Vehicle Journal, 2021, 12(3): 123. |
14 | 谢长君,费亚龙,曾春年,等.基于无迹粒子滤波的车载锂离子电池状态估计[J].电工技术学报,2018,33(17):3958-3964. |
XIE C J, FEI Y L, ZENG C N, et al. State-of-charge estimation of lithium-ion battery using unscented particle filter in vehicle[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 3958-3964. | |
15 | LI L, HU M, XU Y, et al. State of charge estimation for lithium-ion power battery based on H-infinity filter algorithm[J]. Applied Sciences, 2020, 10(18): 6371. |
16 | MA Y, ZHU J, LI X, et al. State of charge and state of health estimation based on dual nonlinear adaptive observer and hysteresis model of lithium-ion battery[J]. Journal of Renewable and Sustainable Energy, 2021, 13(4): 044702. |
17 | XIONG R, LI L, YU Q, et al. A set membership theory based parameter and state of charge co-estimation method for all-climate batteries[J]. Journal of Cleaner Production, 2020, 249: 119380. |
18 | LIN C, MU H, XIONG R, et al. A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm[J]. Applied Energy, 2016, 166: 76-83. |
19 | LIN C, MU H, XIONG R, et al. Multi-model probabilities based state fusion estimation method of lithium-ion battery for electric vehicles: state-of-energy[J]. Applied Energy, 2017, 194: 560-568. |
20 | XIONG R, WANG J, SHEN W, et al. Co-estimation of state of charge and capacity for lithium-ion batteries with multi-stage model fusion method[J]. Engineering, 2021, 7(10): 1469-1482. |
21 | LI Y, WANG C, GONG J. A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique[J]. Energy, 2017, 141: 1402-1415. |
22 | 田野,宋凯.考虑电池特性的多模型Kalman滤波SOC估计[J].汽车安全与节能学报,2018,9(2):223-230. |
TIAN Y, SONG K. Multi-model adaptive Kalman filtering SOC estimation considering battery characteristics[J]. Journal of Automotive Safety and Energy, 2018, 9(2): 223-230. | |
23 | HUANG B, MA Y, WANG C, et al. A multi-model probability based two-layer fusion modeling approach of supercapacitor for electric vehicles[J]. Energies, 2021, 14(15): 4644. |
24 | FU S, LIU W, LUO W, et al. State of charge estimation of lithium-ion phosphate battery based on weighted multi-innovation cubature Kalman filter[J]. Journal of Energy Storage, 2022, 50: 104175. |
25 | 王榘,熊瑞,穆浩.温度和老化意识融合驱动的电动车辆锂离子动力电池电量和容量协同估计[J].电工技术学报,2020,35(23):4980-4987. |
WANG J, XIONG R, MU H. Co-estimation of lithium-ion battery state-of-charge and capacity through the temperature and aging awareness model for electric vehicles[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4980-4987. | |
26 | THIRUVONASUNDARI D, DEEPA K. Electric vehicle battery modelling methods based on state of charge–review[J]. J. Green Eng, 2020, 10(1): 24-61. |
27 | 王晶晶,王刚,王睿.基于模糊熵的多传感器加权融合算法[J].传感器与微系统,2016,35(7):109-112. |
WANG J J, WANG G, WANG R. Multi-sensor weighted fusion algorithm based on fuzzy entropy[J]. Transducer and Microsystem Technologies, 2016, 35(7): 109-112. | |
28 | 陈鹏年,李丽敏,温宗周,等.基于自适应加权平均多传感器的泥石流灾害预报模型[J].自动化与仪器仪表,2021,262(8):14-17,22. |
CHEN P N, LI L M, WEN Z Z, et al. Based on adaptive weighted average multi-sensor debris flow prediction model[J]. Automation and Instrumentation, 2021, 262(8): 14-17,22. |
[1] | Nianzhong Zhang,Qiang Song,Guanfeng Wang,Mingsheng Wang. Research on Non-Current-Sensor Control of Permanent Magnet Synchronous Motor for Vehicle [J]. Automotive Engineering, 2024, 46(2): 281-289. |
[2] | Bin Deng, Weihan Li, Di Wu, Bingzhan Zhang, Han Zhao. Integral Sliding Mode Control for Four-Wheel Active Steering Based on Kalman Filter Extended State Observer [J]. Automotive Engineering, 2024, 46(1): 100-108. |
[3] | Yongtao Li,Chenxu Sun,Weiguang Zheng,Enyong Xu,Yufang Li,Shanchao Wang. Collision Warning Based on Fusion of Millimeter Wave Radar and Vision [J]. Automotive Engineering, 2023, 45(9): 1666-1676. |
[4] | Minghui Hu,Guangyao Zhu,Changhe Liu,Guofeng Tang. Joint Estimation of State of Charge for Lithium-Ion Battery with Kalman Filtering and Gated Recurrent Unit Neural Networks Considering Hysteresis Characteristics [J]. Automotive Engineering, 2023, 45(9): 1688-1701. |
[5] | Xiao Wu, Wenku Shi, Zhiyong Chen. Active Suspension Control Based on Interacting Multiple Model Kalman Filter [J]. Automotive Engineering, 2023, 45(7): 1200-1211. |
[6] | Xiaoqiang Sun, Yulin Wang, Weiwei Hu, Yingfeng Cai, Long Chen, Wong Pak Kin. Research on Estimation Strategy of Vehicle Driving State Based on Tire Piecewise Affine Identification Model [J]. Automotive Engineering, 2023, 45(7): 1212-1221. |
[7] | Zhenfeng Pu, Liang Tang, Wenbin Shangguan, Weiwei Wang, Kaihong Jiang. Research on the Estimation of Vehicle Speed Under Low-Speed Conditions Based on Multi-sensor Information [J]. Automotive Engineering, 2023, 45(7): 1235-1243. |
[8] | Jianhua Chen,Zhongming Xu,Zhifei Zhang. Suspension State Estimation Based on Wheelbase Preview at Variable Speed [J]. Automotive Engineering, 2023, 45(6): 1040-1049. |
[9] | Xinrong Zhang,Xin Wang,Xinle Gong,Jin Huang,Dan Huang,Pengxing Wang. Segmented Identification Method of Tire-Road Friction Coefficient for Intelligent Vehicles [J]. Automotive Engineering, 2023, 45(10): 1923-1932. |
[10] | Shuxuan Sheng,Chongbo Jing,Chaoyang Jiang. Vision and Single RSU Assisted Vehicle Positioning Method [J]. Automotive Engineering, 2022, 44(7): 1009-1017. |
[11] | Zewu Deng,Zhaozheng Hu,Zhe Zhou, LiuYulin,Chao Peng. Intelligent Vehicle Positioning by Fusing LiDAR and Double-layer Map Model [J]. Automotive Engineering, 2022, 44(7): 1018-1026. |
[12] | Ping Wang,Qingrui Gong,Ze Cheng,Ji’ang Zhang. An AUKF-Based SOC Estimation Method for Lithium-ion Battery [J]. Automotive Engineering, 2022, 44(7): 1080-1088. |
[13] | Lang Liu,Zhifei Zhang,Hongwei Lu,Zhongming Xu. Road Roughness Identification Based on Augmented Kalman Filtering with Consideration of Vehicle Acceleration [J]. Automotive Engineering, 2022, 44(2): 247-255. |
[14] | Qiu Xia,Te Chen,Long Chen,Xing Xu,Yingfeng Cai. Vehicle Sideslip Angle Estimation Method Based on Redundant Information Fusion [J]. Automotive Engineering, 2022, 44(2): 280-289. |
[15] | Yunfei Zha,Lü Xiaolong,Xinye Liu,Fangwu Ma. Fusion Estimation of Vehicle State Parameters Based on Dichotomy [J]. Automotive Engineering, 2022, 44(12): 1910-1918. |