汽车工程 ›› 2024, Vol. 46 ›› Issue (2): 260-268.doi: 10.19562/j.chinasae.qcgc.2024.02.008

• • 上一篇    下一篇

基于单片阻抗一致性吹扫的燃料电池低温冷启动策略研究

孔维峰1,2,方川3,刘继红4,李建秋5,李飞强3,黄圣涛2,赵兴旺3,石焱3,袁殿3,徐梁飞5,孙鹏2,周恩飞4,欧阳明高5()   

  1. 1.北京理工大学机械与车辆工程学院,北京 100081
    2.北京公共交通控股(集团)有限公司,北京 100032
    3.北京亿华通科技股份有限公司,北京 100192
    4.北京福田欧辉新能源汽车有限公司,北京 102206
    5.清华大学,汽车安全与节能国家重点实验室,北京 100084
  • 收稿日期:2023-06-18 修回日期:2023-08-11 出版日期:2024-02-25 发布日期:2024-02-23
  • 通讯作者: 欧阳明高 E-mail:ouymg@tsinghua.edu.cn

Research on Fuel Cell Cold Start Strategy Based on Single Cell Impedance Consistency Purging

Weifeng Kong1,2,Chuan Fang3,Jihong Liu4,Jianqiu Li5,Feiqiang Li3,Shengtao Huang2,Xingwang Zhao3,Yan Shi3,Dian Yuan3,Liangfei Xu5,Peng Sun2,Enfei Zhou4,Minggao Ouyang5()   

  1. 1.School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081
    2.Beijing Public Transport Corporation,Beijing 100032
    3.Beijing SinoHytec Co. ,Ltd. ,Beijing 100192
    4.Beijing Futian Ouhui New Energy Automobile Co. ,Ltd. ,Beijing 102206
    5.Tsinghua University,State Key Lab of Automotive Safety and Energy,Beijing 100084
  • Received:2023-06-18 Revised:2023-08-11 Online:2024-02-25 Published:2024-02-23
  • Contact: Minggao Ouyang E-mail:ouymg@tsinghua.edu.cn

摘要:

车用石墨板燃料电池低温冷启动能力弱,是影响燃料电池技术在北方寒冷地区大规模推广的重要瓶颈。饥饿自升温是一种常见的低温冷启动策略,其基本原理是通过降低反应物供应速率来增加过电势,短时间在电池内部产生大量热量从而实现快速升温。该方法原理简单,但对电堆单体初始含水量一致性要求高、且易出现单片反极和尾排氢浓度超标的情况,影响系统安全性和电堆耐久性。针对上述问题,课题组研制了单体多通道交流阻抗在线测试装置,提出了面向单片阻抗一致性的电堆优化吹扫策略,建立了基于定电压变流量泵氢控制的低温冷启动方法,实现了低温启动瞬态过程的高产热、高安全、高动态的电压、电流、进堆/旁通空气流量的多目标多参数的耦合协调控制。台架实验结果表明,采用优化吹扫策略后,单片阻抗间最大差值由0.7降低至0.2 mΩ以下;燃料电池发动机系统可实现124 s内-40 ℃下快速启动,且重复性好。相关技术在北京冬奥会燃料电池示范中获得了应用,验证了其有效性。

关键词: 燃料电池汽车, 低温环境适应性, 停机吹扫, 冷启动, 泵氢控制

Abstract:

The weak cold-start capability of fuel cells with graphite plates for vehicles is an important bottleneck that affects the large-scale promotion of fuel cell vehicles in the cold regions of northern China. Starvation self-heating is a common cold-start strategy whose basic principle is to increase overpotential by reducing the supply rate of reactants, and generate a large amount of heat inside the cell in a short period of time to achieve rapid heating. This approach is simple, but it requires a high degree of consistency in the initial water content of the stack monomers and is prone to single-chip reverse polarity and excess hydrogen concentration emission, which can affect the safety and durability of the fuel cell. To solve the above problems, the research group has developed a multi-channel AC impedance measurement device, proposed an optimized purging strategy for single cell impedance consistency, and established a constant voltage and variable air flow control method for cold-start of fuel cells, to achieve multi-objective and multi-parameter coupled coordinated control that provides high heat production, high safety, and high dynamics for voltage, current, and inlet/outlet air flow in the low-temperature start transient process. The bench test results show that the maximum impedance deviation of fuel cells is decreased from 0.7 to less than 0.2 mΩ, and the fuel cell engine system can achieve a fast start at -40 ℃ within 124 s, with good repeatability. The relevant technology is applied in the fuel cell demonstration at the 2022 Winter Olympics, with its effectiveness verified.

Key words: fuel cell vehicle, low temperature adaptability, shutdown purging, cold start, pump hydrogen control