汽车工程 ›› 2024, Vol. 46 ›› Issue (5): 893-905.doi: 10.19562/j.chinasae.qcgc.2024.05.015

• • 上一篇    

考虑道路可用宽度的自适应避撞控制

周兵1,郑康强1(),王茹1,吴晓建2,柴天1   

  1. 1.湖南大学,汽车车身先进设计制造国家重点实验室,长沙 410082
    2.南昌大学先进制造学院,南昌 330031
  • 收稿日期:2023-09-05 出版日期:2024-05-25 发布日期:2024-05-17
  • 通讯作者: 郑康强 E-mail:zkq_zqr@163.com
  • 基金资助:
    国家自然科学基金(51875184)

Adaptive Collision Avoidance Control Considering Available Road Width

Bing Zhou1,Kangqiang Zheng1(),Ru Wang1,Xiaojian Wu2,Tian Chai1   

  1. 1.Hunan University,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Changsha 410082
    2.School of Advanced Manufacturing,Nanchang University,Nanchang 330031
  • Received:2023-09-05 Online:2024-05-25 Published:2024-05-17
  • Contact: Kangqiang Zheng E-mail:zkq_zqr@163.com

摘要:

针对紧急避撞中车辆避开障碍物后回归直线行驶时容易出现过多转向性失控问题,提出一种利用道路空间换取车辆稳定性的解决方案——考虑道路可用宽度的自适应避撞控制方法。首先搭建7自由度车辆模型,基于最优控制和MPC理论设计避撞控制器,并通过大量仿真再现过多转向失控工况,进而对失控工况的车辆输入与车辆状态进行剖析,明晰车辆失控机理。接着基于失控机理设计考虑道路可用宽度的自适应避撞控制系统,其中包括基于深度神经网络的参数自适应控制,基于启动车速的介入准则以及基于Lyapunov保守稳定域的切出时机。仿真实验证明,所提出的自适应避撞控制策略可以充分利用当前道路可用宽度,在避撞后回归直线行驶时提高车辆稳定性,从而达到避免事故发生的效果,弥补了传统定参数控制器无法适应复杂多变工况的缺陷。最后,基于dSPACE硬件在环实验,验证了所提出控制策略的实时性能够满足紧急工况避撞要求。

关键词: 高速避撞, 过多转向性失控, 自适应控制, 可用道路宽度, 回稳控制

Abstract:

When a vehicle returns to a straight line after avoiding obstacles in emergency collision avoidance, it is prone to loss of control in the form of oversteering. To address this problem, a method for utilizing road space in exchange for improved vehicle stability is proposed in this paper, i.e. adaptive collision avoidance control considering available road width. Firstly, a seven-degree-of-freedom vehicle model and collision avoidance controller based on optimal control and MPC are built. The oversteering runaway condition is replicated by a large number of simulations. The mechanism of oversteering runaway is explored by analyzing the vehicle inputs and states. Then, based on the oversteering runaway mechanism, an adaptive collision avoidance control system is designed considering the available width of the road, which includes parameter adaptive control based on deep neural networks, intervention criteria based on starting speed, and exit time based on the Lyapunov conservative stability region. According to simulations and experiments, the proposed adaptive collision avoidance control strategy can fully utilize the available road width to improve vehicle stability when returning to a straight line after avoiding a collision, accomplishing the goal of avoiding accidents, which corrects the traditional fixed parameter controller's inability to adapt to complex and variable scenarios. Finally, hardware-in-the-loop experiments based on dSPACE verify that the real-time performance of the proposed control strategy can satisfy the collision avoidance requirements in emergencies.

Key words: high-speed collision avoidance, oversteering runaway, adaptive control, available road width, regress stability control