汽车工程 ›› 2022, Vol. 44 ›› Issue (3): 319-329.doi: 10.19562/j.chinasae.qcgc.2022.03.003

所属专题: 智能网联汽车技术专题-规划&控制2022年

• • 上一篇    下一篇

应用于车辆纵向控制的无模型自适应滑模预测控制方法

江浩斌(),冯张棋,洪阳珂,韦奇志,皮健   

  1. 江苏大学汽车与交通工程学院,镇江  212013
  • 收稿日期:2021-10-03 修回日期:2021-11-15 出版日期:2022-03-25 发布日期:2022-03-25
  • 通讯作者: 江浩斌 E-mail:jianghb@ujs.edu.cn
  • 基金资助:
    国家自然科学基金(51675235)

Model-free Adaptive Sliding Mode Predictive Control Algorithm for Vehicle Longitudinal Control

Haobin Jiang(),Zhangqi Feng,Yangke Hong,Qizhi Wei,Jian Pi   

  1. Department of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang  212013
  • Received:2021-10-03 Revised:2021-11-15 Online:2022-03-25 Published:2022-03-25
  • Contact: Haobin Jiang E-mail:jianghb@ujs.edu.cn

摘要:

鉴于汽车纵向动力学系统为典型的参数时变不定、多扰动的非线性离散系统,基于精确数学模型的控制算法较难取得理想效果,本文中采用无需模型、基于输入/输出数据的控制算法。首先,基于紧格式动态线性化数据模型,将无模型自适应控制(MFAC)算法、滑模控制(SMC)算法和模型预测控制(MPC)算法相结合,设计了无模型自适应控制器。接着,通过理论分析对其进行了稳定性证明,最后将所提出的控制算法与常用于纵向控制的前馈+反馈算法和MFASMC(MFAC+SMC)算法进行了仿真对比,并通过硬件在环实验(HIL)验证了算法的有效性。结果表明,该控制算法响应速度快、鲁棒性强,且输出更为平滑,可较好地应用于智能汽车纵向动力学控制。

关键词: 智能汽车, 纵向动力学控制, 数据驱动控制, 无模型自适应控制, 滑模控制, 模型预测控制

Abstract:

In view of that the vehicle longitudinal dynamics system is a typical nonlinear discrete system with time-varying parameters and multiple disturbances, so the control algorithm based on accurate mathematical model is hard to achieve ideal results, an algorithm merely based on input/output data without model is adopted in this paper. Firstly, based on the compact-format dynamic linearization model, the model-free adaptive controller (MFAC) algorithm is combined with sliding-mode control (SMC) algorithm and model predictive control (MPC) algorithm to design a model-free adaptive controller. Then its stability is proved by theoretical analysis. Finally, a comparative simulation is conducted to compare the control algorithm proposed with the feedforward + feedback algorithm commonly used in longitudinal control and MFASMC (MFAC+SMC) algorithm, with a hardware-in-the-loop test carried out to verify the effectiveness of the algorithm proposed. The results show that the control algorithm proposed has fast response, strong robustness and smoother output, and can be better applied to the longitudinal dynamics control of intelligent vehicles.

Key words: intelligent vehicle, longitudinal dynamics control, data-driven control, model-free adaptive control, sliding-mode control, model predictive control