汽车工程 ›› 2022, Vol. 44 ›› Issue (12): 1877-1888.doi: 10.19562/j.chinasae.qcgc.2022.12.009

所属专题: 新能源汽车技术-电驱动&能量管理2022年

• • 上一篇    下一篇

双离合器协同的功率分流式混合动力汽车动态协调优化控制研究

施德华1,2,3,容香伟1,汪少华1(),张开美1,陈龙1,李春3   

  1. 1.江苏大学汽车工程研究院,镇江  212013
    2.汽车零部件先进制造技术教育部重点实验室(重庆理工大学),重庆  400054
    3.金龙联合汽车工业(苏州)有限公司,苏州  215026
  • 收稿日期:2022-07-23 修回日期:2022-08-09 出版日期:2022-12-25 发布日期:2022-12-22
  • 通讯作者: 汪少华 E-mail:shwang@ujs.edu.cn
  • 基金资助:
    国家自然科学基金(51905219);江苏省自然科学基金(BK20190844);汽车零部件先进制造技术教育部重点实验室开放课题基金(2020KLMT05);镇江市重点研发计划项目(GY2021001)

Research on the Optimal Dynamic Coordinated Control of Power Split Hybrid Electric Vehicles with Dual-Clutch Collaboration

Dehua Shi1,2,3,Xiangwei Rong1,Shaohua Wang1(),Kaimei Zhang1,Long Chen1,Chun Li3   

  1. 1.Institute of Automotive Engineering,Jiangsu University,Zhenjiang  212013
    2.Key Laboratory of Advanced Manufacture Technology for Automobile Parts (Chongqing University of Technology),Ministry of Education,Chongqing  400054
    3.Higer Bus Company Limited,Suzhou  215026
  • Received:2022-07-23 Revised:2022-08-09 Online:2022-12-25 Published:2022-12-22
  • Contact: Shaohua Wang E-mail:shwang@ujs.edu.cn

摘要:

针对集成多离合器的功率分流式混合动力汽车,研究了包含两个离合器状态协同切换的纯电动模式到混合动力模式的瞬态切换行为及动态协调优化控制策略。基于杠杆法和矩阵法建立系统不同切换阶段的动力学模型,根据发动机起停控制及模式切换需求对双离合器工作序列进行可行性分析并制定模式切换逻辑,在此基础上,针对双离合器协同滑摩导致的切换品质下降,以整车纵向冲击度、离合器滑摩功及模式切换时间为加权优化目标,基于模拟退火算法优化不同离合器接合和分离过程的滑摩行为,为解决固定发动机转速调节策略难以适应不同加速工况需求的难题,构建了混合动力模式下的发动机转速自适应调节策略,实现基于不同工况需求转矩的电机MG1转矩自适应调节。仿真测试和硬件在环测试结果表明,所设计的动态协调优化控制不仅能够有效地减小双离合器协同时的功率分流式HEV瞬态模式切换冲击度,而且具有优异的工况适应性,能够保证不同加速工况下的瞬态模式切换品质。

关键词: 混合动力汽车, 动态协调控制, 自适应控制, 模拟退火, 硬件在环

Abstract:

For the power split hybrid electric vehicle integrated with multi-clutch, the transient mode switching behavior and optimal dynamic coordinated control strategy from pure electric mode to hybrid driving mode involving the state collaboration of two clutches are studied. Based on the lever analogy and the matrix method, the dynamic models of the system at different switching stages are established. The feasibility analysis of the dual-clutch working sequence is conducted according to the engine start-stop control and transient mode switching requirements, and the mode switching logic is further formulated. On this basis, for the mode switching quality degradation caused by the collaboration slipping of the two clutches, the weighted sum of the vehicle longitudinal jerk, clutch friction work and mode switching time is taken as the optimization objective, and the simulated annealing algorithm is applied to optimize the slipping behavior of different clutch engagement and disengagement processes. In order to address the problem that the fixed engine speed adjustment strategy is difficult to adapt to the requirements of different acceleration conditions, the adaptive engine speed adjustment strategy in hybrid driving mode is constructed to realize adaptive torque regulation of motor MG1 according to the driving torque requirements under different conditions. Simulation and hardware-in-the-loop (HIL) test results show that the proposed optimal dynamic coordinated control can not only reduce the mode switching jerk of the power split HEV effectively for the dual clutch collaboration process, but also enables good working condition adaptability, which can ensure good transient mode switching quality under different acceleration conditions.

Key words: hybrid electric vehicle, dynamic coordinated control, adaptive control, simulated annealing, hardware in the loop