汽车工程 ›› 2021, Vol. 43 ›› Issue (7): 1057-1065.doi: 10.19562/j.chinasae.qcgc.2021.07.013

• • 上一篇    下一篇

基于神经工效学的智能车辆横向控制模型研究

郭应时,张洪加(),付锐,王畅   

  1. 长安大学汽车学院,西安 710064
  • 收稿日期:2021-01-04 修回日期:2021-02-23 出版日期:2021-07-25 发布日期:2021-07-20
  • 通讯作者: 张洪加 E-mail:zhanghongjia@chd.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFB160050);国家自然科学基金(51908054)

Research on Intelligent Vehicle Lateral Control Model Based on Neuro⁃Ergonomics

Yingshi Guo,Hongjia Zhang(),Rui Fu,Chang Wang   

  1. School of Automobile,Chang’an University,Xi’an 710064
  • Received:2021-01-04 Revised:2021-02-23 Online:2021-07-25 Published:2021-07-20
  • Contact: Hongjia Zhang E-mail:zhanghongjia@chd.edu.cn

摘要:

现有的驾驶人模型,在揭示驾驶人的驾驶机理上,或单独从驾驶人认知角度出发,或单独从控制角度出发,缺乏一个将驾驶人的认知过程和控制原理有机地结合起来的系统模型。鉴于此,本文中在神经工效学认知体系架构的基础上融合了模型预测控制算法(MPC)以及手臂肌肉模型,建立了一种基于神经工效学的车辆横向控制模型。模型采用了CarSim/Simulink联合仿真和基于dSPACE/驾驶模拟器硬件在环的方法进行验证。结果表明:基于神经工效学的车辆横向控制模型的轨迹跟踪精度优于MPC算法。同时,在控制转向盘转角、横摆角和横向加速度波动幅度等方面也较MPC算法有一定的提升。

关键词: 横向控制模型, 神经工效学, 模型预测控制, 硬件在环

Abstract:

In the process of revealing the driving mechanism of the driver, some of the existing driver models are from the perspective of driver cognition alone and the other from the perspective of control alone, so there is a lack of a system model that organically combines the driver’s cognitive process and control principle. In order to solve the above problems, a vehicle lateral control model based on neuro?ergonomics is established by integrating model predictive control (MPC) algorithm and arm muscle model based on neuro?ergonomics cognitive architecture. The model is verified by test using the CarSim/Simulink co?simulation and dSPACE/driving simulator hardware in the loop. The results show that the trajectory tracking accuracy of the vehicle lateral control model based on neuro?ergonomics is better than that of the MPC algorithm. Additionally, the control of steering wheel angle, yaw angle and lateral acceleration fluctuation amplitude is also improved compared with MPC algorithm.

Key words: lateral control model, neuro?ergonomics, model predictive control, hardware in the loop