汽车工程 ›› 2023, Vol. 45 ›› Issue (10): 1803-1814.doi: 10.19562/j.chinasae.qcgc.2023.10.003

所属专题: 智能网联汽车技术专题-规划&决策2023年

• • 上一篇    下一篇

面向量产的自适应巡航控制系统纵向加速度规划方法研究

芦勇1,何一超2,田贺2,江昆1,杨殿阁1()   

  1. 1.清华大学车辆与运载学院,北京 100084
    2.联创汽车电子有限公司,上海 201206
  • 收稿日期:2023-03-28 修回日期:2023-04-21 出版日期:2023-10-25 发布日期:2023-10-23
  • 通讯作者: 杨殿阁 E-mail:ydg@mail.tsinghua.edu.cn

Research on Longitudinal Acceleration Planning Method of Adaptive Cruise Control System for Mass Production

Yong Lu1,Yichao He2,He Tian2,Kun Jiang1,Diange Yang1()   

  1. 1.School of Vehicle and Mobility,Tsinghua University,Beijing 100084
    2.DIAS Automotive Electronic Systems Co. ,Ltd. ,Shanghai 201206
  • Received:2023-03-28 Revised:2023-04-21 Online:2023-10-25 Published:2023-10-23
  • Contact: Diange Yang E-mail:ydg@mail.tsinghua.edu.cn

摘要:

当前应用较多的基于预测的纵向加速度规划方法由于算法复杂,占用硬件资源大,较难在低算力控制器上实现量产。而传统的规划方法虽然占用资源少,实时性好,但无法保证高安全、高舒适以及高可靠的量产要求,且缺少对多车型适配的高通用特性。为解决上述问题,本文提出一种纵向加速度规划方法。 定速巡航规划采用多维优化PID控制方法,借助PID控制思想,合理划分误差段和时距段,离线设计二维加速度上下限表,可适配多车型多时距配置,提升算法通用性。跟车巡航加速度规划采用基于动态预测时域的模型预测控制方法,通过考虑执行器效率和时延,预测车辆运动状态,进而提高系统安全性。同时,对预测时域进行动态管理,具备多场景自适应、多车型适配的高通用性,并通过降低求解复杂度,满足低资源占用要求。通过搭载低算力控制器的多款量产车辆道路试验,验证了该方法在定速巡航和跟车场景中具有高安全、高可靠的特性。两款量产车型1万km路试结果舒适性体感占比分别为89.21%和86.95%,以及百公里接管次数均小于1次,表明了该方法满足舒适性和鲁棒性的量产要求。

关键词: 量产, 自适应巡航, 加速度规划, 动态时域管理, 模型预测控制

Abstract:

The current longitudinal acceleration planning method based on prediction is complex and takes up a lot of hardware resources, so it is difficult to achieve mass production on low computing power controllers. Although the traditional planning method occupies fewer resources and has good real-time performance, it cannot guarantee the mass production requirements of high safety, comfort and reliability, and lacks the high versatility for adapting to multiple models. In order to solve the above problems, this paper proposes a longitudinal acceleration planning method. The constant speed cruise planning adopts the multi-dimensional optimization PID control method. With the help of the PID control idea, the error section and the time interval are reasonably divided, and the two-dimensional acceleration upper and lower limits are designed offline, which can be adapted to multi-vehicle and multi-duration configurations so as to improve the versatility of the algorithm. The car-following cruise acceleration planning adopts the model predictive control method based on dynamic prediction time domain, which predicts the vehicle motion state by considering the actuator efficiency and time delay, and then enhances the system safety. At the same time, the prediction time domain is dynamically managed to provide high versatility with multiple scenarios and multi-vehicle adaptation. And the solution complexity is reduced to meet the requirements of low resource occupation. Through the road test of a variety of mass-produced vehicles equipped with low computing power controllers, it is verified that the method has high safety and high reliability characteristics in the scenarios of constant-speed cruise and car following. After the10 000 km road test of the two mass-produced vehicles, 89.21 % and 86.95 % of the comfortable somatosensory ratio and statistical result for takeover less than one time per hundred kilometers show that the method meets the mass production requirements of comfort and robustness.

Key words: mass production, adaptive cruise, acceleration planning, dynamic time domain management, model predictive control