汽车工程 ›› 2024, Vol. 46 ›› Issue (7): 1157-1166.doi: 10.19562/j.chinasae.qcgc.2024.07.003
• • 上一篇
收稿日期:
2024-02-07
出版日期:
2024-07-25
发布日期:
2024-07-22
通讯作者:
邓道林
E-mail:DengDL@atlbattery.com
Received:
2024-02-07
Online:
2024-07-25
Published:
2024-07-22
Contact:
Daolin Deng
E-mail:DengDL@atlbattery.com
摘要:
为保证软包锂离子电池用铝塑膜封装的可靠性,须严格控制成形后的铝层厚度,而其获得依赖大量的实物试验,导致前期设计优化和后期生产过程质量监控均须耗费高额成本。本文采用实物试验和仿真模拟相结合的方法,构建能精准表征铝塑膜力学性能的本构方程,并提出基于整体铝塑膜厚度对铝层厚度的预测方法,实现成形后铝塑膜和铝层厚度的精准预测。同时,基于仿真DOE,筛选关键影响因子,构建响应曲面模型,实现不同产品的快速预测及最佳参数匹配设计,也为生产实时质量监控提供解决方案。研究结果表明,多层复合铝塑膜在塑性阶段表现出了明显的各向异性,3参数Barlat-Lian本构模型,可较好表征铝塑膜的各向异性性能,明显优于单一方向弹塑性模型,可实现铝塑膜成形性能的精准预测。所构建的响应曲面模型可替代精细化有限元模型,实现对铝塑膜和铝层厚度精准预测和参数优化,误差小于5%,工艺参数优化后冲压成形铝层厚度可提升10%~20%。集成开发的应用APP可满足冲压工艺参数的快速设计评估、优化及成形质量实时监控等应用需求。
邓道林. 软包锂离子电池用铝塑膜成形性能研究[J]. 汽车工程, 2024, 46(7): 1157-1166.
Daolin Deng. Study on Forming Performance of Aluminum-Plastic Film for Pouch Lithium-Ion Batteries[J]. Automotive Engineering, 2024, 46(7): 1157-1166.
表7
仿真试验表"
序 号 | A/mm | B/mm | C/mm | D/mm | E/mm | F/mm | G/mm | A角位铝塑 膜厚度/μm | A角位铝 层厚度/μm |
---|---|---|---|---|---|---|---|---|---|
1 | 5 | 0.35 | 1 | 5 | 1 | 0.8 | 0.3 | 117.52 | 29.48 |
2 | 10 | 0.7 | 1 | 10 | 1 | 0.8 | 0.3 | 114.17 | 28.51 |
3 | 10 | 0.7 | 3 | 10 | 3 | 1.8 | 0.6 | 116.63 | 29.22 |
4 | 5 | 0.7 | 1 | 10 | 3 | 0.8 | 0.6 | 129.58 | 32.97 |
5 | 10 | 0.35 | 1 | 10 | 3 | 1.8 | 0.3 | 112.21 | 27.95 |
6 | 5 | 0.35 | 1 | 10 | 1 | 1.8 | 0.6 | 132.67 | 33.86 |
7 | 10 | 0.7 | 3 | 5 | 3 | 0.8 | 0.3 | 104.33 | 25.67 |
8 | 10 | 0.35 | 3 | 5 | 1 | 1.8 | 0.3 | 103.63 | 25.47 |
9 | 5 | 0.7 | 3 | 5 | 1 | 0.8 | 0.6 | 127.46 | 32.35 |
10 | 10 | 0.35 | 1 | 5 | 3 | 0.8 | 0.6 | 97.25 | 23.62 |
11 | 5 | 0.35 | 3 | 5 | 3 | 1.8 | 0.6 | 131.13 | 33.41 |
12 | 5 | 0.7 | 3 | 10 | 1 | 1.8 | 0.3 | 141.88 | 36.52 |
13 | 10 | 0.7 | 1 | 5 | 1 | 1.8 | 0.6 | 101.29 | 24.79 |
14 | 5 | 0.7 | 1 | 5 | 3 | 1.8 | 0.3 | 126.33 | 32.03 |
15 | 10 | 0.35 | 3 | 10 | 1 | 0.8 | 0.6 | 113.50 | 28.32 |
16 | 5 | 0.35 | 3 | 10 | 3 | 0.8 | 0.3 | 130.88 | 33.34 |
17 | 7.5 | 0.525 | 2 | 7.5 | 2 | 1.3 | 0.45 | 114.92 | 28.73 |
表8
因子方差分析结果"
来源 | 自由度 | 平方和 | 均方和 | F值 | P值 |
---|---|---|---|---|---|
合计 | 16 | ||||
模型 | 12 | 2 592.7 | 216.1 | 525.3 | 0.000 |
线性 | 7 | 2 514.0 | 359.2 | 873.2 | 0.000 |
A | 1 | 1 901.8 | 1 901.8 | 4 623.7 | 0.000 |
B | 1 | 32.8 | 32.8 | 79.7 | 0.001 |
C | 1 | 92.1 | 92.1 | 224.0 | 0.000 |
D | 1 | 426.0 | 426.0 | 1 035.8 | 0.000 |
E | 1 | 0.9 | 0.9 | 2.2 | 0.215 |
F | 1 | 60.3 | 60.3 | 146.6 | 0.000 |
G | 1 | 0.1 | 0.1 | 0.3 | 0.605 |
2因子交互作用 | 4 | 64.6 | 16.2 | 39.3 | 0.002 |
AC | 1 | 9.1 | 9.1 | 22.1 | 0.009 |
AD | 1 | 19.0 | 19.0 | 46.2 | 0.002 |
AF | 1 | 30.4 | 30.4 | 74.0 | 0.001 |
AG | 1 | 6.1 | 6.1 | 14.9 | 0.018 |
弯曲 | 1 | 14.0 | 14.0 | 34.1 | 0.004 |
误差 | 4 | 1.65 | 41 |
1 | 陈伟, 雷中伟, 冯绍辉, 等. 软封装锂电池铝塑膜成形性能研究进展[J]. 包装工程, 2022, 43(9): 22-30. |
CHEN W, LEI Z W, FENG S H, et al. Research progress on forming performance of aluminum-plastic laminated film for soft encapsulated lithium-ion batteries [J]. Packaging Engineering, 2022, 43(9): 22-30. | |
2 | 张鹏博, 张晓华, 王训, 等. 锂离子电池用铝塑复合膜精密冲压工艺研究[J].热加工工艺, 2016, 45(7): 167-170. |
ZHANG P B, ZHANG X H, WANG X, et al. Study on precision stamping process of al-plastic compound film for li-ion battery [J]. Hot Working Technology, 2016, 45(7): 167-170. | |
3 | 邓可. 锂离子电池软包铝塑复合膜综述[J].有色金属加工, 2021, 50(5): 9-17. |
DENG K. Overview of flexible packaging aluminum-plastic composite film for lithium-ion battery [J]. Nonferrous Metals Processing, 2021, 50(5): 9-17. | |
4 | 袁瑞建, 姚杏梅, 成石壮. 软包锂离子电池用复合铝塑膜的制备工艺[J]. 内蒙古石油化工, 2022(9): 49-51. |
YUAN R J, YAO X M, CHENG S Z. The process of producing composite film for lithium-ion batteries [J]. Inner Mongolia Petrochemical Industry, 2022(9): 49-51. | |
5 | 高艳飞. 用于锂电池包装的铝塑膜印刷封装新工艺[J]. 包装工程, 2017, 38(7): 206-209. |
GAO Y F. New printing and packaging process of lithium battery with aluminum plastic film [J]. Packaging Engineering, 2017, 38(7): 206-209. | |
6 | 徐雅慧, 陈思琦, 黄冉军, 等. 软包电池在纯电动汽车中应用的机遇与挑战[J]. 电源技术, 2022, 46(6): 585-590. |
XU Y H, CHEN S Q, HUANG R J, et al. Opportunities and challenges of pouch cell applied in electric vehicles [J]. Chinese Journal of Power Sources, 2022, 46(6): 585-590. | |
7 | GUO Zhangsheng, YANG Fan. Heat seal properties of polymer-aluminum-polymer composite films for application in pouch lithium-ion battery [J]. The Royal Society of Chemistry, 2016, 6: 8971-8979. |
8 | 王雪峰, 纪小刚. 软包锂电池铝塑膜热封强度工艺参数研究[J]. 实验力学, 2023, 38(2): 222-230. |
WANG X F, JI X G. Study on process parameters of heat seal strength for aluminum plastic film of soft package lithium battery [J]. Journal of Experimental Mechanics, 2023, 38(2): 222-230. | |
9 | 吕尚书. 软包锂离子电池铝塑膜的热封性能研究[J]. 功能材料, 2019, 50(7): 7115-7119. |
LV S S. Study on thermal sealing performance of aluminum-plastic film of soft pack Li-ion battery [J]. Functional Materials, 2019, 50(7): 7115-7119. | |
10 | JANG J H, ABN S H. Numerical and experimental analysis of heat sealing of multi-layered laminate films used in lithium polymer battery packaging [J]. Journal of Plastic Film & Sheeting, 2017, 33(2):1-26. |
11 | 范洋, 郭战胜, 徐艺伟, 等. 软包装锂离子电池铝塑复合膜的热封工艺[J]. 储能科学与技术, 2016, 5(1): 85-90. |
FANG Y, GUO Z S, XU Y W, et al. Investigation on heat-sealing process of the aluminum plastic composite foil in pouch Li-ion battery [J]. Energy Storage Science and Technology, 2016, 5(1): 85-90. | |
12 | 范洋, 郭战胜, 冯捷敏. 电解液浸泡对铝塑复合膜热封强度的影响[J].储能科学与技术, 2016, 5(4): 545-550. |
FANG Y, GUO Z S, FENG J M. Investigation on the influence of electrolyte immersion on heat sealing strength of aluminum-plastic composite foil [J]. Energy Storage Science and Technology, 2016, 5(4): 545-550. | |
13 | ANDREASSON E, KAO W S, STAHLE P. Micro-mechanisms of a laminated packaging material during fracture[J]. Engineering Fracture Mechanics, 2014, 127:313-326. |
14 | LI T, SUO Z. Ductility of thin metal films on polymer substrates modulated by interfacial adhesion [J]. International Journal of Solids and Structures, 2007, 44:1696-1705. |
15 | LI T, HUANG Z Y, XI Z C, et al. Delocalizing strain in a thin metal film on a polymer substrate [J]. Mechanics of Materials, 2005, 37:261-273. |
16 | ZENG Fangxinyu, CHEN Jinyao, YANG Feng, et al. Effects of polypropylene orientation on mechanical and heat seal properties of polymer-aluminum-polymer composite films for pouch lithium-ion batteries [J]. Materials, 2018, 11(1):144. |
17 | 关玉明, 赵越, 崔佳, 等. 软包锂离子电池电芯封装铝塑膜外壳拉伸工艺[J]. 中国机械工程, 2019, 30(8): 988-993. |
GUAN Y M, ZHAO Y, CUI J, et al. Drawing process of aluminum plastic film shell for packing of flexible packaging lithium battery cores [J]. China Mechanic Engineering, 2019, 30(8): 988-993. | |
18 | 赵越, 肖艳春, 崔佳, 等. 锂离子电池电芯铝塑膜外壳冲压成形[J]. 锻压技术, 2017, 47(7): 48-54. |
ZHAO Y, XIAO Y C, CUI J, et al. Stamping process of aluminum plastic film shell for Li-ion battery core [J]. Forging & Stamping Technology, 2017, 47(7): 48-54. | |
19 | 曲杰, 刘奇飞, 何志豪,等. 锂离子电池铝塑膜建模研究[J]. 电源技术, 2024, 48 (1):101-106. |
QU J, LIU Q F, HE Z H, et al. Modeling of aluminum plastic film for lithium-ion battery[J]. Chinese Journal of Power Sources, 2024, 48 (1):101-106. | |
20 | 董则防, 潘秋红, 黄寿志, 等. 电池铝箔关键生产技术及研究进展[J]. 轻合金加工技术, 2023, 51(5): 1-5. |
DONG Z F, PAN Q H, HUANG S Z, et al. Key production technologies and research progress of aluminum foil for battery [J]. Light Fabrication Technology, 2023, 51(5): 1-5. | |
21 | BARLAT F, LIAN J. Plastic behavior and stretch ability of sheet metals, part I: a yield function for orthotropic sheet under plane stress conditions [J]. International Journal Plasticity, 1989, 5(1):51-60. |
[1] | 陈琳,何熳平,吴淑孝,陈德乾,赵铭思,潘海鸿. 基于自适应模糊C-均值算法的退役锂离子电池快速聚类[J]. 汽车工程, 2024, 46(4): 643-651. |
[2] | 郭文超,杨林,邓忠伟,李济霖,范志先. 云端数据驱动的锂电池故障分级预警研究[J]. 汽车工程, 2023, 45(9): 1677-1687. |
[3] | 陈一哲,范宏德,王祎纯,王辉,李俊,华林. 车用纤维金属层板构件冲压变形行为研究[J]. 汽车工程, 2023, 45(3): 517-526. |
[4] | 段志勇,马菁. 锂电池热管-液冷板式冷却结构多目标优化[J]. 汽车工程, 2023, 45(11): 2047-2057. |
[5] | 陈吉清,曾常菁,周云郊,兰凤崇,刘青山. 质子交换膜燃料电池五边形挡板流场结构优化与性能改进[J]. 汽车工程, 2023, 45(10): 1862-1875. |
[6] | 陈光,魏晨阳,李晓宇,景国玺. 基于梁单元简化模型的锂电池组碰撞安全临界条件的判定[J]. 汽车工程, 2022, 44(5): 722-729. |
[7] | 吴晓刚,齐明山,杜玖玉,Shchurov N. I.,Shtang A. A.. 不同充电倍率下锂离子电池组冷却系统结构设计[J]. 汽车工程, 2022, 44(4): 482-494. |
[8] | 常润泽,郑斌,冯旭宁,徐成善,王淮斌,陈立铎,王有镗. 隔热层对锂电池模组热失控蔓延特性影响的实验研究[J]. 汽车工程, 2021, 43(10): 1448-1456. |
[9] | 靳博文, 乔慧敏, 潘天红, 陈山. 基于内阻功率消耗的锂电池SOC估计*[J]. 汽车工程, 2020, 42(8): 1008-1015. |
[10] | 李志杰, 陈吉清, 兰凤崇, 杨威. 车用锂电池PP隔膜机械失效导致内部微短路的机理研究*[J]. 汽车工程, 2020, 42(4): 454-461. |
[11] | 陈吉清, 刘蒙蒙, 周云郊, 兰凤崇, 骆济焕. 不同滥用条件下车用锂电池安全性实验研究*[J]. 汽车工程, 2020, 42(1): 66-73. |
[12] | 靳立强, 孙志祥, 刘志茹, 李建华, 杨名. 不同温度下锂电池剩余电量估算的仿真研究*[J]. 汽车工程, 2019, 41(5): 590-598. |
[13] | 宋凯,陈旭,成艾国. 考虑温度影响和滞回效应的锂电池特性建模*[J]. 汽车工程, 2019, 41(3): 334-339. |
[14] | 程鹏, 金飞翔, 邵晨曦, 修磊. 基于正交试验的铝合金覆盖件模面优化*[J]. 汽车工程, 2019, 41(1): 96-102. |
[15] | 徐宁, 楼狄明, 谭丕强, 胡志远. 电动公交客车增程器开关控制策略和等效能耗最小化策略优化*[J]. 汽车工程, 2018, 40(12): 1377-1384. |
|