汽车工程 ›› 2024, Vol. 46 ›› Issue (12): 2154-2163.doi: 10.19562/j.chinasae.qcgc.2024.12.002
刘波1,2,唐永鑫1,2,伍毅1,2(),王紫阳1,2,杨琴3,胡铁刚3,徐小敏3
收稿日期:
2024-06-23
修回日期:
2024-08-13
出版日期:
2024-12-25
发布日期:
2024-12-20
通讯作者:
伍毅
E-mail:yi_wu@ustb.edu.cn
基金资助:
Bo Liu1,2,Yongxin Tang1,2,Yi Wu1,2(),Ziyang Wang1,2,Qin Yang3,Tiegang Hu3,Xiaomin Xu3
Received:
2024-06-23
Revised:
2024-08-13
Online:
2024-12-25
Published:
2024-12-20
Contact:
Yi Wu
E-mail:yi_wu@ustb.edu.cn
摘要:
近年大型一体压铸铝合金车身结构件逐渐被用于取代传统的冲压-焊接白车身结构。本文以一体压铸的车身后地板结构为对象,开展了轻量化设计研究。针对一体压铸车身结构件的分析问题,提出了等效分析方法;考虑压铸结构的工艺与性能,研究了结构设计中的工艺约束,阐明了其材料性能的非均质性;基于拓扑优化方法,分析了该结构的设计域,获取了最优传力路径;在上述研究内容的基础上,开展了轻量化设计,在保证性能的同时实现了7%的轻量。相关研究工作明确了新型一体压铸铝合金车身结构件的设计优化流程,具有一定的参考和借鉴意义。
刘波,唐永鑫,伍毅,王紫阳,杨琴,胡铁刚,徐小敏. 一体压铸铝合金车身结构件的轻量化设计研究[J]. 汽车工程, 2024, 46(12): 2154-2163.
Bo Liu,Yongxin Tang,Yi Wu,Ziyang Wang,Qin Yang,Tiegang Hu,Xiaomin Xu. Study on Lightweight Design of Integrated Mega-casting Aluminum Alloy Vehicle Body Components[J]. Automotive Engineering, 2024, 46(12): 2154-2163.
1 | TEN B C, SINGH H, HILLEBRECHT M. Lightweight design for the future steel vehicle[J]. Auto Tech Review, 2012, 1(11): 24-30. |
2 | 崔磊, 毛江鸿, 金伟良, 等. 基于多边界切割插值的改进子模型分析方法[J]. 计算力学学报, 2015, 32(5): 619-626. |
CUI L, MAO J H, JIN W L, et al. Improved sub-model analysis method based on multiple boundary cut interpolation[J]. Chinese Journal of Computational Mechanics, 2020, 42(5): 567-573. | |
3 | 张君媛, 姜哲, 李仲玉, 等. 基于抗撞性的汽车 B 柱碳纤维加强板优化设计[J]. 汽车工程, 2018, 40(10): 1166-1171. |
ZHANG J Y, JIANG Z, LI Z Y, et al. Optimization design of vehicle CFRP B-pillar stiffening panel for crashworthiness[J]. Automotive Engineering, 2018, 40(10): 1166-1171. | |
4 | 罗婷瑞, 樊振中, 胡惠翔, 等. 新能源汽车用一体化压铸铝合金研究现状与发展趋势[J]. 特种铸造及有色合金, 2023 (11): 1472-1478. |
LUO T R, FAN Z Z, HU H X, et al. Research status and development trend of integrated die-casting aluminum alloy for new energy vehicles[J]. Special Casting & Nonferrous Alloys, 2023, 43(11): 1472-1478. | |
5 | 刘付曙, 廖仲杰, 陈国恩, 等. 高真空压铸减震塔铸件力学性能的研究[J]. 特种铸造及有色合金, 2022, 42(2): 246-248. |
LIU F S, LIAO Z J, CHEN G E, et al. Mechanical properties of high vacuum die casting schock tower parts[J]. Special Casting & Nonferrous Alloys, 2022, 42(2): 246-248. | |
6 | ZHANG J, WANG S, ZHOU H, et al. Manufacturable casting parts design with topology optimization of structural assemblies[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236(4): 401-412. |
7 | 马晶, 亢战. 一种基于附加重力场的铸件拓扑优化方法[J]. 计算力学学报, 2021, 38(4): 498-504. |
MA J, KANG Z. A casting topology optimization method based on additional gravity field[J]. Chinese Journal of Computational Mechanics, 2021, 38(4): 498-504. | |
8 | 谷先广, 陈红林, 俞陆新, 等. 精密铸铝件一体化设计及在车身轻量化中的应用[J]. 汽车工程, 2024, 46(1): 179-186. |
GU X G, CHEN H L, YU L X, et al. Integrated design of precision aluminum castings parts and its application in lightweight vehicle body[J]. Automotive Engineering, 2024, 46(1): 179-186. | |
9 | 苏永雷, 张志飞. 车身多性能约束下的一体压铸三角梁轻量化设计[J]. 中国机械工程, 2024, 35(4): 691-699. |
SU Y L, ZHANG Z F. Integrated casting triangular beam lightweight improving with multi-performance constraints of body systems[J]. China Mechanical Engineering, 2024, 35(4): 691-699. | |
10 | 方志凌, 宋燕利, 康洁, 等. 一体化压铸铝合金前机舱轻量化设计与优化[J]. 汽车工程, 2024, 46(7) : 1314-1322. |
FANG Z L, SONG Y L, KANG J, et al. Lightweight design and optimization of integrated die casting aluminum alloy front cabin[J]. Automotive Engineering, 2024, 46(7): 1314-1322. | |
11 | TRILLER J, LOPEZ M L, NOSSEK M, et al. Multidisciplinary optimization of automotive mega-castings merging classical structural optimization with response-surface-based optimization enhanced by machine learning[J]. Scientific Reports, 2023, 13(1): 21678. |
12 | YANG J, LIU B, HUANG H. Research on composition-process-property prediction of die casting Al alloys via combining feature creation and attention mechanisms[J]. Journal of Materials Research and Technology, 2024, 28: 335-346. |
13 | 冯振仙. 工艺参数对一体压铸后底板铸件力学性能的影响[J]. 铸造工程, 2024, 48(1): 17-21. |
FENG Z X. Influence of process parameters on mechanical properties of integrated die casting rear floor[J]. Foundry Engineering, 2024, 48(1): 17-21. | |
14 | 张凯成, 李舜, 孙明杰. 钢铝材料结合的商用车车架多工况轻量化优化设计[J]. 中国机械工程, 2020, 31(18): 2206-2211. |
ZHANG K C, LI S M, SUN M J. Lightweight optimization design of commercial vehicle frames combined by steel and aluminum materials under multiple working conditions[J]. China Mechanical Engineering, 2020, 31(18): 2206-2211. | |
15 | 苏永雷, 张志飞. 副车架静刚度修正方法及多层级拓扑优化[J]. 汽车工程, 2023, 45(11): 2157-2164. |
SU Y L, ZHANG Z F. Correction method of static stiffness and multi-level topology optimization for subframe[J]. Automotive Engineering, 2023, 45(11): 2157-2164. | |
16 | 王超, 李明, 成艾国, 等. 钢-铝混合驾驶室材料-结构轻量化设计[J]. 汽车工程, 2024, 46(4): 735-744,690. |
WANG C, LI M, CHENG A G, et al. Lightweight design of material-structure for steel-aluminum hybrid cab[J]. Automotive Engineering, 2024, 46(4): 735-744,690. | |
17 | 林佳武, 李玄霜, 陈宗明, 等. 真空高压铸造铝合金车身后纵梁轻量化设计[J]. 汽车工程, 2020, 42(3): 383-389. |
LIN J W, LI X S, CHEN Z M, et al. Lightweight design of body rear longitudinal beam of vahp die-casting aluminum alloy[J]. Automotive Engineering, 2020, 42(3): 383-389. | |
18 | 陈潇凯, 李超, 白影春, 等. 汽车多材料控制臂拓扑优化方法[J]. 汽车工程, 2021, 43(7): 1088-1095. |
CHEN X K, LI C, BAI Y C, et al. Multi-material topology optimization of automotive control arm[J]. Automotive Engineering, 2021, 43(7): 1088-1095. | |
19 | WANG C, XU B, DUAN Z, et al. Structural topology optimization considering both performance and manufacturability: strength, stiffness, and connectivity[J]. Structural and Multidisciplinary Optimization, 2021, 63: 1427-1453. |
20 | 兰凤崇, 张浩锴, 王家豪, 等. 汽车转向节拓扑优化方法研究及应用[J]. 汽车工程, 2014, 36(4): 464-468,490. |
LAN F C, ZHANG H K, et al. Study and application of topology optimization technique for vehicle steering knuckles[J]. Automotive Engineering, 2014, 36(4): 464-468,490. | |
21 | 占金青, 彭怡平, 刘敏, 等. 基于多性能约束的连续体结构拓扑优化设计[J]. 计算机集成制造系统, 2022, 28(6): 1746-1754. |
ZHAN J Q, PENG Y P, LIU M, et al. Topology optimization design of continuum structures based on multiple performance constraints[J]. Computer Integrated Manufacturing Systems, 2022, 28(6): 1746-1754. | |
22 | ZHOU E L, WU Y, LIN X Y, et al. A normalization strategy for BESO-based structural optimization and its application to frequency response suppression[J]. Acta Mechanica, 2021, 232: 1307-1327. |
23 | 邱瑞斌, 雷飞, 陈园, 等. 基于权重比的车架多工况拓扑优化方法研究[J]. 工程设计学报, 2016,23(5): 444-452. |
QIU R B, LEI F, CHEN Y, et al. Research on the method of multi-case topology optimization of frame structure based on the weight ratio[J]. Journal of Engineering Design, 2016,23(5): 444-452. |
[1] | 曹榕,华钧伟,李永成,郭方俐,侯文彬. 基于数据驱动的车身结构智能设计与分析[J]. 汽车工程, 2024, 46(7): 1273-1281. |
[2] | 华钧伟,侯文彬. 基于多对象离散拓扑优化方法的车身结构平台化设计[J]. 汽车工程, 2024, 46(6): 1075-1084. |
[3] | 王超,李明,成艾国,何智成,于万元. 钢-铝混合驾驶室材料-结构轻量化设计[J]. 汽车工程, 2024, 46(4): 735-744. |
[4] | 孟宪明,任鹏飞,张赛. 前机舱复杂薄壁结构设计与性能研究[J]. 汽车工程, 2024, 46(12): 2173-2180. |
[5] | 严磊,杨姝,亓昌. 冲压模具结构拓扑—尺寸联合优化设计方法[J]. 汽车工程, 2024, 46(12): 2181-2189. |
[6] | 廉玉波,衣本钢,崔营营,田洪生,闫军飞,程晨. 基于扭转刚度的电池包与车身集成设计研究[J]. 汽车工程, 2023, 45(4): 647-653. |
[7] | 高云凯,张锁,袁泽. 考虑疲劳性能的驾驶室拓扑优化设计[J]. 汽车工程, 2023, 45(3): 468-476. |
[8] | 苏永雷,张志飞. 副车架静刚度修正方法及多层级拓扑优化[J]. 汽车工程, 2023, 45(11): 2157-2164. |
[9] | 陈潇凯,李超,白影春,杨子发. 汽车多材料控制臂拓扑优化方法[J]. 汽车工程, 2021, 43(7): 1088-1095. |
[10] | 张志飞,胡桐铜,范维春,王长金,黄瑞文. 基于拉拽安全性能的汽车座椅优化设计[J]. 汽车工程, 2021, 43(2): 218-225. |
[11] | 魏彤辉, 左文杰, 郑宏伟, 李锋. 基于降维算法的车身可靠性优化*[J]. 汽车工程, 2020, 42(7): 941-948. |
[12] | 高云凯, 刘哲, 徐亚男, 徐翔, 冯兆玄. CFRP在汽车覆盖件中的应用研究*[J]. 汽车工程, 2020, 42(7): 978-984. |
[13] | 贺良国, 赵杰, 谷先广. 基于多胞结构的车身前端轻量化和耐撞性设计*[J]. 汽车工程, 2020, 42(6): 832-839. |
[14] | 崔岸, 徐晓倩, 孙文龙, 杨伟丽, 黄显晴, 刘天赐. 基于耐撞性的碳纤维/聚丙烯泡沫夹芯板结构优化研究*[J]. 汽车工程, 2020, 42(6): 840-846. |
[15] | 吴长风, 那景新, 秦国锋, 卢琳兆, 袁正, 杨佳宙. 基于子结构拓扑优化的大客车耐撞性改进*[J]. 汽车工程, 2019, 41(8): 922-926. |
|