| 1 |
詹海浪. 基于计算机视觉的车道线检测与交通路标识别[D]. 广州:华南理工大学, 2015.
|
|
ZHAN H L.The lane line detection and traffic sign recognition baseon computer vision[D].Guangzhou:South China University of Technology,2015.
|
| 2 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. Proceedings of the Conference on Computer Vision and Pattern Recognition, Las Vegas,USA, 2016:779-788.
|
| 3 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,39(6):1137-1149.
|
| 4 |
张炳力, 秦浩然, 江尚, 等. 基于RetinaNet及优化损失函数的夜间车辆检测方法 [J].汽车工程, 2021,43(8):1195-1202.
|
|
ZHANG B L,QIN H R,JIANG S,et al.A method of vehicle detection at night based on RetinaNet and optimized loss functions[J].Automotive Engineering,2021,43(8):1195-1202.
|
| 5 |
沈瑜, 李阳阳, 李博昊, 等. 基于感知增强与多尺度融合的小目标车辆检测 [J].北京航空航天大学学报, 2024:1-12.
|
|
SHEN Y,LI Y Y,LI B H,et al.Small target vehicle detection based on perceptual enhancement and multi scale fusion[J].Journal of Beijing University of Aeronautics and Astronautics,2024:1-12.
|
| 6 |
ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]. Proceedings of the AAAI Conference on Artificial Intelligence, New York, USA, 2020, 34:12993-13000.
|
| 7 |
ZHAO Y, LV W, XU S, et al. Detrs beat YOLOS on real-time object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024:16965-16974.
|
| 8 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016:770-778.
|
| 9 |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020:1580-1589.
|
| 10 |
DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style ConvNets great again[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021:13733-13742.
|
| 11 |
SHAKER A, MAAZ M, RASHEED H, et al. SwiftFormer: efficient additive attention for transformer-based real-time mobile vision applications[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023:17425-17436.
|
| 12 |
GONG W. Lightweight object detection: a study based on YOLOv7 integrated with ShuffleNetv2 and vision transformer [J].arXiv preprint arXiv:, 2024.
|
| 13 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J].Communications of the ACM, 2017,60(6):84-90.
|
| 14 |
REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019:658-666.
|
| 15 |
ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation [J].IEEE Transactions on Cybernetics, 2022,52(8):8574-8586.
|
| 16 |
YU F, CHEN H, WANG X, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020:2636-2645.
|
| 17 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization [J].International Journal of Computer Vision, 2020,128:336-359.
|
| 18 |
CHEN J, KAO S H, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023:12021-12031.
|
| 19 |
LIU X, PENG H, ZHENG N, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Vancouver, Canada, 2023:14420-14430.
|
| 20 |
QIN D, LEICHNER C, DELAKIS M, et al. MobileNetV4: universal models for the mobile ecosystem[C]. Proceedings of the Computer Vision-ECCV 2024, Springer, Cham 2024:78-96.
|
| 21 |
CAI X, LAI Q, WANG Y, et al. Poly kernel inception network for remote sensing detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024:27706-27716.
|
| 22 |
ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression [J].Neurocomputing, 2022,506:146-157.
|
| 23 |
GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression [J].arXiv preprint arXiv:, 2022.
|
| 24 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2020,42(2):318-327.
|
| 25 |
WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[C]. Proceedings of the Computer Vision-ECCV 2024, Springer, Cham, 2024:1-12.
|