汽车工程 ›› 2022, Vol. 44 ›› Issue (3): 434-441.doi: 10.19562/j.chinasae.qcgc.2022.03.016

所属专题: 智能网联汽车技术专题-感知&HMI&测评2022年

• • 上一篇    下一篇

基于两阶段分类算法的中国交通标志牌识别

冯润泽,江昆,于伟光,杨殿阁()   

  1. 清华大学,汽车安全与节能国家重点实验室,北京  100084
  • 修回日期:2021-12-06 出版日期:2022-03-25 发布日期:2022-03-25
  • 通讯作者: 杨殿阁 E-mail:ydg@mail.tsinghua.edu.cn
  • 基金资助:
    国家自然科学联合基金项目(20181301525)

Chinese Traffic Sign Recognition Based on Two-stage Classification Algorithm

Runze Feng,Kun Jiang,Weiguang Yu,Diange Yang()   

  1. Tsinghua University,State Key Laboratory of Automotive Safety and Energy,Beijing  100084
  • Revised:2021-12-06 Online:2022-03-25 Published:2022-03-25
  • Contact: Diange Yang E-mail:ydg@mail.tsinghua.edu.cn

摘要:

自动驾驶技术对于缓解交通拥堵,降低交通运输成本具有重要作用;高级驾驶辅助系统(ADAS)可以有效增加汽车驾驶的舒适性和安全性。交通标志牌中包含了丰富的语义信息,为自动驾驶汽车和ADAS的决策提供重要约束,因此交通标志牌的识别算法开发至关重要。本文基于中国交通场景特点以及自动驾驶、ADAS对于交通标志牌识别的高准确性需求,提出了一种基于两阶段分类的交通标志牌识别算法框架。算法包含检测和分类两个阶段,检测阶段检测出图像中的交通标志牌,分类阶段对交通标志牌先后进行大类和子类划分。算法通过细化任务,独立提升各算法模块的性能,进而提高整体算法的识别精度。本文对单阶段识别算法进行改进作为算法的检测模块,实验结果表明,提出的算法精度上优于基准单阶段识别算法,mAP平均提升8.52%,并且在检测速度优于传统两阶段识别算法Faster RCNN的情况下,mAP提升40%以上。

关键词: 目标识别, 交通标志牌识别, 卷积神经网络

Abstract:

Autonomous driving technology plays an important role in alleviating traffic congestion and reducing transportation cost. Advanced driver assistance systems (ADAS) can effectively increase the comfort and safety of car driving. Traffic signs contain rich semantic information, which provides important constraints for decision-making of autonomous vehicles and ADAS. Therefore, development of traffic sign recognition algorithms is very important. Based on the characteristics of traffic scenes in China and the high accuracy requirements of automatic driving and ADAS on traffic sign detection, this paper proposes a traffic sign recognition algorithm framework based on two-stage classification. The algorithm consists of two stages of recognition and classification. In the recognition stage, traffic signs in the image are detected. And in the classification stage, traffic signs are divided into categories and subcategories. By refining the task, the algorithm improves the performance of each algorithm module independently, thus improving the recognition accuracy of the whole algorithm. In this paper, the single-stage recognition algorithm is improved to be used as the recognition module of the algorithm. The experimental results show that the proposed algorithm is better than the benchmark single-stage recognition algorithm in accuracy, with an average increase of 8.52% in mAP. In addition, with the detection speed better than the traditional two-stage recognition algorithm Faster-RCNN, the mAP is improved by 40%.

Key words: object recognition, traffic sign recognition, convolutional neural network