汽车工程 ›› 2024, Vol. 46 ›› Issue (8): 1520-1528.doi: 10.19562/j.chinasae.qcgc.2024.08.018
• • 上一篇
收稿日期:
2024-02-26
修回日期:
2024-04-10
出版日期:
2024-08-25
发布日期:
2024-08-23
通讯作者:
吴道俊
E-mail:wudaojun217@126.com
基金资助:
Liang Su,Daojun Wu(),Quanquan Chen
Received:
2024-02-26
Revised:
2024-04-10
Online:
2024-08-25
Published:
2024-08-23
Contact:
Daojun Wu
E-mail:wudaojun217@126.com
摘要:
为识别和获取用户路线的汽车结构疲劳损伤,提出了“素材谱”和“探测车”的概念,进而提出了一种基于路况识别、划分并与素材谱相结合的用户路线的汽车结构疲劳损伤的便捷获取方法。首先,构建了IRI(国际平整度指数)识别路面等级的数学模型,建立了通过探测车的简配传感器方案识别用户路面等级的方法,并研究了车速与IRI的关联性和独立性。接着,提出了基于IRI和车速二维变量对用户路线的探测车道路工况细化分级及里程分布确定的方法。然后,结合全通道样车在本地采集的素材谱及单位里程损伤,最终高效地计算、获得用户路线及区域的汽车结构疲劳损伤。从而创建和形成了“素材谱+探测车”识别用户路线总损伤的解决方案。验证结果良好,表明所研究技术方法具有良好的可操作性、精确性和有效性。
苏亮,吴道俊,陈泉泉. 基于路况识别及素材谱的汽车用户路线疲劳损伤获取研究[J]. 汽车工程, 2024, 46(8): 1520-1528.
Liang Su,Daojun Wu,Quanquan Chen. Study on Calculation of Customer Vehicle Fatigue Damage Based on Road Condition Identification and Element Spectrum[J]. Automotive Engineering, 2024, 46(8): 1520-1528.
表5
同路段不同车速的IRI计算结果"
路段 | 目标车速/ (km·h-1) | IRI/ (m·km-1) | IRI均值/ (m·km-1) | IRI与均 值的比值 | IRI 标准差 | 变异 系数/% |
---|---|---|---|---|---|---|
物流园 公路 | 10 | 3.96 | 3.79 | 1.05 | 0.26 | 6.8 |
25 | 3.44 | 0.91 | ||||
30 | 3.42 | 0.90 | ||||
40 | 3.91 | 1.03 | ||||
50 | 3.86 | 1.02 | ||||
60 | 3.95 | 1.04 | ||||
开发区 大道 | 10 | 3.41 | 3.41 | 1.00 | 0.16 | 4.6 |
25 | 3.26 | 0.96 | ||||
30 | 3.36 | 0.99 | ||||
40 | 3.68 | 1.08 | ||||
50 | 3.49 | 1.02 | ||||
60 | 3.27 | 0.96 | ||||
城市 干线 | 10 | 1.66 | 1.61 | 1.03 | 0.11 | 6.8 |
25 | 1.78 | 1.11 | ||||
30 | 1.50 | 0.93 | ||||
40 | 1.68 | 1.04 | ||||
50 | 1.51 | 0.94 | ||||
60 | 1.54 | 0.96 |
表7
素材谱损伤"
二维划分 区间 | IRI/ (m·km-1) | u/ (km·h-1) | 应变测点1 | 应变测点2 | 应变测点3 | 应变测点4 | 应变测点5 | 应变测点6 |
---|---|---|---|---|---|---|---|---|
... | ... | ... | ... | ... | ... | ... | ... | ... |
B60 | 3.19 | 60 | 1.99E-07 | 1.11E-05 | 5.00E-06 | 1.06E-06 | 1.09E-08 | 5.63E-07 |
B50 | 3.19 | 50 | 5.54E-07 | 1.60E-05 | 3.92E-06 | 1.29E-06 | 2.54E-08 | 9.55E-07 |
B40 | 3.19 | 40 | 2.98E-07 | 1.07E-05 | 2.86E-06 | 1.42E-06 | 2.85E-08 | 9.56E-07 |
B30 | 3.19 | 30 | 9.72E-08 | 3.41E-06 | 4.29E-07 | 4.29E-07 | 9.42E-09 | 1.87E-07 |
B20 | 3.19 | 20 | 9.42E-08 | 2.59E-06 | 3.45E-07 | 4.44E-07 | 7.76E-09 | 1.78E-07 |
B10 | 3.19 | 10 | 2.20E-08 | 1.19E-06 | 6.57E-08 | 1.21E-07 | 2.39E-09 | 5.59E-08 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
A60 | 1.6 | 60 | 5.91E-08 | 3.19E-07 | 8.01E-08 | 2.56E-08 | 7.25E-10 | 1.40E-08 |
A50 | 1.6 | 50 | 6.28E-08 | 1.77E-06 | 2.71E-07 | 1.59E-07 | 2.95E-09 | 2.85E-07 |
A40 | 1.6 | 40 | 7.66E-08 | 4.08E-06 | 3.86E-07 | 3.96E-07 | 9.93E-09 | 8.08E-07 |
A30 | 1.6 | 30 | 7.94E-08 | 2.61E-06 | 2.66E-07 | 7.57E-07 | 2.42E-08 | 1.79E-07 |
A20 | 1.6 | 20 | 1.96E-08 | 8.05E-07 | 4.97E-08 | 1.27E-07 | 2.25E-09 | 7.11E-08 |
A10 | 1.6 | 10 | 8.80E-11 | 1.05E-08 | 3.02E-11 | 3.68E-10 | 3.34E-11 | 9.96E-11 |
表8
用户某路线等里程分割后的IRI和车速"
分割路段 序号 | 时间/s | 里程/km | 平均车速/ (km·h-1) | IRI/ (m·km-1) |
---|---|---|---|---|
1 | 419 | 1.0 | 8.6 | 2.38 |
2 | 201 | 1.0 | 17.9 | 1.44 |
3 | 92 | 1.0 | 39.1 | 1.8 |
4 | 215 | 1.0 | 16.9 | 2.3 |
5 | 92 | 1.0 | 38.9 | 1.81 |
6 | 167 | 1.0 | 21.6 | 1.25 |
7 | 124 | 1.0 | 28.9 | 1.71 |
8 | 177 | 1.0 | 20.3 | 2.07 |
9 | 179 | 1.0 | 20.3 | 2.25 |
10 | 113 | 1.0 | 31.7 | 2.47 |
11 | 104 | 1.0 | 34.6 | 1.95 |
12 | 147 | 1.0 | 24.6 | 1.65 |
13 | 80 | 1.0 | 44.8 | 1.61 |
14 | 78 | 1.0 | 46.3 | 2.28 |
15 | 73 | 1.0 | 49.4 | 1.82 |
16 | 85 | 1.0 | 42.1 | 2.39 |
17 | 80 | 1.0 | 45.3 | 1.12 |
18 | 68 | 1.0 | 52.9 | 0.72 |
19 | 69 | 1.0 | 51.8 | 0.95 |
20 | 92 | 1.0 | 39.6 | 2.20 |
21 | 69 | 1.0 | 51.9 | 1.14 |
22 | 76 | 1.0 | 47.2 | 1.47 |
23 | 188 | 1.0 | 19.1 | 2.04 |
24 | 120 | 1.0 | 30.0 | 2.04 |
25 | 314 | 1.0 | 11.5 | 2.28 |
26 | 93 | 1.0 | 39.0 | 1.55 |
27 | 83 | 1.0 | 43.1 | 1.92 |
28 | 159 | 1.0 | 22.7 | 1.66 |
29 | 222 | 1.0 | 16.2 | 2.31 |
30 | 343 | 1.0 | 10.4 | 2.77 |
31 | 148 | 1.0 | 24.5 | 2.96 |
32 | 184 | 1.0 | 19.5 | 3.11 |
33 | 84 | 1.0 | 42.8 | 2.90 |
34 | 174 | 1.0 | 20.8 | 3.63 |
表10
各应变测点在各划分区间的素材谱损伤"
区间 | 应变测点1 | 应变测点2 | 应变测点3 | 应变测点4 | 应变测点5 | 应变测点6 |
---|---|---|---|---|---|---|
B60 | 0 | 0 | 0 | 0 | 0 | 0 |
B50 | 5.54E-07 | 1.60E-05 | 3.92E-06 | 1.29E-06 | 2.54E-08 | 9.55E-07 |
B40 | 5.96E-07 | 2.15E-05 | 5.73E-06 | 2.85E-06 | 5.69E-08 | 1.91E-06 |
B30 | 9.72E-08 | 3.41E-06 | 4.29E-07 | 4.29E-07 | 9.42E-09 | 1.87E-07 |
B20 | 4.71E-07 | 1.30E-05 | 1.72E-06 | 2.22E-06 | 3.88E-08 | 8.90E-07 |
B10 | 6.59E-08 | 3.56E-06 | 1.97E-07 | 3.63E-07 | 7.16E-09 | 1.68E-07 |
A50 | 3.77E-07 | 1.06E-05 | 1.63E-06 | 9.52E-07 | 1.77E-08 | 1.71E-06 |
A40 | 4.60E-07 | 2.45E-05 | 2.32E-06 | 2.37E-06 | 5.96E-08 | 4.85E-06 |
A30 | 2.38E-07 | 7.83E-06 | 7.99E-07 | 2.27E-06 | 7.27E-08 | 5.38E-07 |
A20 | 1.37E-07 | 5.64E-06 | 3.48E-07 | 8.87E-07 | 1.58E-08 | 4.98E-07 |
A10 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | MATTETTI M, MOLARI G, SEDONI E. Methodology for the realisation of accelerated structural tests on tractors[J]. Biosystems Engineering, 2012, 113(3): 266-271. |
2 | 吴澄.汽车可靠性问卷评价新方法[J].农业装备与车辆工程, 2018, 56(10): 37-41. |
WU C. New method for evaluating the automobile reliability questionnaire[J]. Agricultural Equipment & Vehicle Engineering, 2018, 56(10): 37-41. | |
3 | 凌龙.基于实际载荷谱的驱动桥台架疲劳试验等效方法研究[D].重庆:重庆理工大学, 2022. |
LING L. Research on equivalent method of fatigue test of drive axle platform based on actual load spectrum[D]. Chongqing: Chongqing University of Technology, 2022. | |
4 | 陈传钦,陈春燕,钟志宏,等.基于用户道路载荷谱采集的试验场关联研究[J].工程与试验, 2020, 60(2): 31-33. |
CHEN C Q, CHEN C Y, ZHONG Z H, et al. Study on proving ground correlation based on public road load data acquisition[J]. Engineering & Test, 2020, 60(2): 31-33. | |
5 | 武振,郭瑞玲,梁东,等.用户关联技术在整车可靠性试验中的应用[J].北京汽车, 2020(5): 16-20. |
WU Z, GUO R L, LIANG D, et al. Application of user related technology in vehicle reliability testing[J]. Beijing Automotive Engineering, 2020(5): 16-20. | |
6 | PASSOS F, MADURO F, COURA I. Customer profile identification and correlation between the customer damage and durability tests[C]. SAE Paper 2019-36-0189. |
7 | 王世英.基于车辆损伤贡献分析的试验场耐久性试验方法研究[D].长春:吉林大学, 2019. |
WANG S Y. The study of PG durability test method based on vehicle damage contribution analysis[D]. Changchun: Jilin University, 2019. | |
8 | 张佳云.自卸车耐久性试验载荷谱编辑与外推[D].重庆:重庆大学, 2021. |
ZHANG J Y. Editing and extrapolation of durability load spectrum of dump truck[D]. Chongqing: Chongqing University, 2021. | |
9 | 熊飞.基于实车道路谱的车身疲劳寿命预测[D].广州:华南理工大学, 2017. |
XIONG F. The fatigue life prediction of car body structure based on real road spectrum[D].Guangzhou: South China University of Technology, 2017. | |
10 | 黄元毅,董国红,钟明,等.基于实测动态道路载荷谱的车辆疲劳性能设计[J].汽车工程, 2017, 39(11): 1282-1285,1293. |
HUANG Y Y, DONG G H, ZHONG M, et al. Vehicle fatigue performance design based on dynamic road load spectra measured[J]. Automotive Engineering, 2017, 39(11): 1282-1285,1293. | |
11 | 郑国峰.典型汽车部件载荷谱及加速耐久性编辑与实验方法研究[D].广州:华南理工大学, 2017. |
ZHENG G F. Studies on load spectrum and accelerated durability test methods to typical automotive parts[D]. Guangzhou: South China University of Technology, 2017. | |
12 | 张禄.大型营运客车用户关联试验场可靠性理论分析及试验研究[D].北京:中国农业大学, 2015. |
ZHANG L. Reliability theory analysis and test on proving ground correlated with customers usage of big operation vehicle[D]. Beijing: China Agricultural University, 2015. | |
13 | AWARA P R, MATHEWB A T, SARAFC M R. IRI (international roughness index): an indicator of vehicle response[C]. International Conference on Materials Manufacturing and Modelling,2017. |
14 | QIN Y C, WANG Z F, XIANG C L. Speed independent road classification strategy based on vehicle response: theory and experimental validation[J]. Mechanical Systems and Signal Processing,2019,117: 653-666. |
15 | 齐麟,怀永成,潘慧.考虑非一致不平整激励的机场跑道平整度评价方法研究[J].振动与冲击, 2023, 42(15): 325-330. |
QI L, HUAI Y C, PAN H. Evaluation method for airport runway roughness considering non-uniform uneven excitation[J]. Journal of Vibration and Shock, 2023, 42(15): 325-330. | |
16 | 曹源文,王杰,姚国宁,等.水泥混凝土路面振动整平特性试验研究[J].中国工程机械学报, 2023, 21(5): 465-470. |
CAO Y W, WANG J, YAO G N, et al. Experimental research on vibration leveling characteristics of cement concrete[J]. Chinese Journal of Construction Machinery, 2023, 21(5): 465-470. | |
17 | ZANG K Y, SHEN J, HUANG H S, et al. Assessing and mapping of road surface roughness based on GPS and accelerometer sensors on bicycle-mounted smartphones[J]. Sensors, 2018,18: 1-17. |
18 | 杨文臣,胡澄宇,田毕江,等.国际平整度指数建模与影响因素综合分析[J].公路交通科技, 2017, 34(12): 23-29. |
YANG W C, HU C Y, TIAN B J, et al. Modelling of international roughness index and comprehensive analysis on its influencing factors[J]. Journal of Highway and Transportation Research and Development, 2017, 34(12): 23-29. | |
19 | 凌建明,刘诗福,袁捷,等.采用IRI评价机场道面平整度的适用性[J].交通运输工程学报, 2017, 17(1): 20-27. |
LING J M, LIU S F, YUAN J, et al. Applicability of IRI based evaluation of airport pavement roughness[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 20-27. | |
20 | 吴庆雄,陈宝春,奚灵智.路面平整度PSD和 IRI评价方法比较[J].交通运输工程学报, 2008, 8(1): 36-41. |
WU Q X, CHEN B C, XI L Z. Comparison of PSD method and IRI method for road roughness evaluation[J]. Journal of Traffic and Transportation Engineering, 2008, 8(1): 36-41. | |
21 | 余志生. 汽车理论[M].5版. 北京: 机械工业出版社, 2017. |
YU Z S. Automobile theory[M]. 5th ed. Beijing: China Machine Press, 2017. | |
22 | 胡春春. 统计学[M]. 北京: 北京理工大学出版社, 2017. |
HU C C. Statistics[M]. Beijing: Beijing Institute of Technology Press, 2017. | |
23 | 方国松, 何海燕. 统计学[M]. 广州: 华南理工大学出版社, 2017. |
FANG G S, HE H Y. Statistics[M]. Guangzhou: South China University of Technology Press, 2017. | |
24 | 吴荻非,刘成龙,覃伯豪,等. 基于车辆参数估计的振动式路面平整度检测标定方法[J/OL].中国公路学报. https://link.cnki.net/urlid/61.1313.U.20240116.1024.006. |
WU D F, LIU C L, QIN B H, et al. Calibration method for vibration-based road roughness detection based on vehicle dynamic parameters estimation[J/OL]. China Journal of Highway and Transport. https://link.cnki.net/urlid/61.1313.U.20240116. 1024. 006. | |
25 | AWATE C, PANSE S, DODDS C. Validation of an accelerated test on a 4-post road simulator[C]. SAE Paper 2007-26-070. |
[1] | 邓浩楠,赵治国,赵坤,李刚,于勤. 四驱车辆交互式多模型自适应无迹卡尔曼滤波路面附着系数估计[J]. 汽车工程, 2024, 46(8): 1357-1369. |
[2] | 王凯,张宗阳,邴涛,崔云龙,孙士涛,李安海. 商用车驾驶室虚拟迭代目标谱优化与分解[J]. 汽车工程, 2024, 46(8): 1501-1510. |
[3] | 韩勇,李明旺,张悦苁,徐国超,潘迪. MPDB工况下驾驶员姿态对损伤风险的研究[J]. 汽车工程, 2024, 46(5): 874-881. |
[4] | 刘卫东,韩宗志,高镇海,康艳虎. 基于智能轮胎系统的实时路面辨识技术[J]. 汽车工程, 2024, 46(4): 617-625. |
[5] | 王彦鑫,李海岩,崔世海,贺丽娟,吕文乐. 基于BP神经网络的儿童乘员头部损伤预测模型及评估参数研究[J]. 汽车工程, 2024, 46(2): 329-336. |
[6] | 吴骁, 史文库, 陈志勇. 基于交互式多模型卡尔曼滤波的主动悬架控制[J]. 汽车工程, 2023, 45(7): 1200-1211. |
[7] | 张雷, 关可人, 丁晓林, 郭鹏宇, 王震坡, 孙逢春. 基于图像识别与动力学融合的路面附着系数估计方法[J]. 汽车工程, 2023, 45(7): 1222-1234. |
[8] | 傅耀宇, 周二振, 丁瑞阳, 周云波, 付条奇, 张明. 某车辆滚翻过程中乘员颈部动态响应[J]. 汽车工程, 2023, 45(7): 1276-1285. |
[9] | 查云飞,吕小龙,陈慧勤,易迎春,王燕燕. 基于路面附着系数估计的车辆轨迹跟踪控制[J]. 汽车工程, 2023, 45(6): 1010-1021. |
[10] | 邹铁方,刘前程,魏亮. 加装传统AEB后的未避免事故典型碰撞场景与事故特征[J]. 汽车工程, 2023, 45(6): 1062-1072. |
[11] | 张宗阳,谢双双,王凯,张玉鹏,邴涛,孙士涛. 基于复杂边界的牵引车车架疲劳研究[J]. 汽车工程, 2023, 45(5): 873-879. |
[12] | 邹铁方,周靖. 参数扰动下基于制动控制的人地碰撞损伤防护风险[J]. 汽车工程, 2023, 45(2): 313-323. |
[13] | 张新荣,王鑫,宫新乐,黄晋,黄丹,王鹏兴. 面向智能车辆的路面附着系数分段识别方法[J]. 汽车工程, 2023, 45(10): 1923-1932. |
[14] | 李海岩,胡静,贺丽娟,冉令华,吕文乐,崔世海,阮世捷. 中国体征第五百分位女性汽车乘员损伤仿生模型开发及验证[J]. 汽车工程, 2023, 45(10): 1965-1974. |
[15] | 孙振东,朱海涛,彭伟强,杨佳璘. 汽车预碰撞制动下乘员离位影响及参数优化分析[J]. 汽车工程, 2023, 45(1): 112-118. |
|