为了提高复杂交通环境下多目标数据关联的实时性与可靠性,本文中基于半抑制式模糊聚类(half suppressed fuzzy c?means clustering, HS?FCM)发展了一种快速多目标车辆跟踪算法。首先对多目标车辆跟踪问题进行了数学描述,并建立了相机像素坐标系与世界坐标系的空间映射关系;其次基于模糊理论将点迹-航迹关联问题转换成量测模糊聚类问题,通过求解各候选量测与聚类中心的模糊隶属度,间接计算出联合概率数据关联(joint probability data association, JPDA)算法中不确定性量测与各目标的关联概率,再利用概率加权融合对多目标状态进行滤波估计;再次在车辆密集工况下通过合理调整卡尔曼增益对量测更新进行抑制,以克服车辆跟踪中目标短暂跟丢问题。实车试验与仿真结果验证了该跟踪算法的可行性与有效性。