Automotive Engineering ›› 2021, Vol. 43 ›› Issue (3): 337-344.doi: 10.19562/j.chinasae.qcgc.2021.03.005
Previous Articles Next Articles
Wei Zhang1,Libing Xie1,Zhaohui Chen1(),Mayi Zhou1,Yong Chen2,Jiwen Fan2,Li Tao2
Received:
2020-09-08
Revised:
2020-11-13
Online:
2021-03-25
Published:
2021-03-26
Contact:
Zhaohui Chen
E-mail:chenzhaohuiok@sina.com
Wei Zhang,Libing Xie,Zhaohui Chen,Mayi Zhou,Yong Chen,Jiwen Fan,Li Tao. Multi⁃objective Optimization Design of Key Structural Parameters of Spiral Section of Helical Inlet[J].Automotive Engineering, 2021, 43(3): 337-344.
"
试验号 | 截面比 | 蜗壳内半径R1/mm | 蜗壳外半径R2/mm | 螺旋室高度H1/mm | 流量系数y1 | 涡流比y2 |
---|---|---|---|---|---|---|
1 | 0.810 | 12.0 | 33.0 | 32.0 | 0.572 | 1.257 |
2 | 0.825 | 14.5 | 30.5 | 30.5 | 0.562 | 1.393 |
3 | 0.840 | 10.0 | 35.0 | 29.0 | 0.583 | 1.153 |
4 | 0.855 | 12.5 | 32.5 | 27.5 | 0.574 | 1.327 |
5 | 0.870 | 15.0 | 30.0 | 33.0 | 0.568 | 1.390 |
6 | 0.885 | 10.5 | 34.5 | 31.5 | 0.59 | 1.145 |
7 | 0.900 | 13.0 | 32.0 | 30.0 | 0.588 | 1.277 |
8 | 0.915 | 15.5 | 29.5 | 28.5 | 0.584 | 1.377 |
9 | 0.930 | 11.0 | 34.0 | 27.0 | 0.596 | 1.150 |
10 | 0.945 | 13.5 | 31.5 | 32.5 | 0.591 | 1.287 |
11 | 0.960 | 16.0 | 29.0 | 31.0 | 0.58 | 1.370 |
12 | 0.975 | 11.5 | 33.5 | 29.5 | 0.598 | 1.160 |
13 | 0.990 | 14.0 | 31.0 | 28.0 | 0.577 | 1.373 |
14 | 0.810 | 11.5 | 32.5 | 31.5 | 0.582 | 1.280 |
15 | 0.825 | 14.0 | 30.0 | 30.0 | 0.578 | 1.362 |
16 | 0.840 | 12.0 | 34.5 | 28.5 | 0.573 | 1.265 |
17 | 0.855 | 14.5 | 32.0 | 27.0 | 0.57 | 1.361 |
18 | 0.870 | 10.0 | 29.5 | 32.5 | 0.556 | 1.364 |
19 | 0.885 | 12.5 | 34.0 | 31.0 | 0.564 | 1.289 |
20 | 0.900 | 15.0 | 31.5 | 29.5 | 0.584 | 1.329 |
21 | 0.915 | 10.5 | 29.0 | 28.0 | 0.583 | 1.352 |
22 | 0.930 | 13.0 | 33.5 | 32.0 | 0.584 | 1.237 |
23 | 0.945 | 15.5 | 31.0 | 30.5 | 0.575 | 1.419 |
24 | 0.960 | 11.0 | 33.0 | 29.0 | 0.592 | 1.258 |
25 | 0.975 | 13.5 | 30.5 | 27.5 | 0.58 | 1.395 |
26 | 0.990 | 16.0 | 35.0 | 33.0 | 0.576 | 1.379 |
27 | 0.810 | 10.0 | 29.0 | 27.0 | 0.581 | 1.331 |
28 | 0.825 | 12.5 | 33.5 | 32.5 | 0.586 | 1.281 |
29 | 0.840 | 15.0 | 31.0 | 31.0 | 0.563 | 1.395 |
30 | 0.855 | 10.5 | 33.0 | 29.5 | 0.576 | 1.256 |
31 | 0.870 | 13.0 | 30.5 | 28.0 | 0.557 | 1.359 |
32 | 0.885 | 15.5 | 35.0 | 32.0 | 0.563 | 1.329 |
33 | 0.900 | 11.0 | 32.5 | 30.5 | 0.585 | 1.333 |
34 | 0.915 | 13.5 | 30.0 | 29.0 | 0.582 | 1.378 |
35 | 0.930 | 16.0 | 34.5 | 27.5 | 0.584 | 1.291 |
36 | 0.945 | 11.5 | 32.0 | 33 | 0.589 | 1.294 |
37 | 0.960 | 14.0 | 29.5 | 31.5 | 0.572 | 1.388 |
38 | 0.975 | 12.0 | 34.0 | 30.0 | 0.58 | 1.323 |
39 | 0.990 | 14.5 | 31.5 | 28.5 | 0.586 | 1.349 |
40 | 0.990 | 16.0 | 35.0 | 27.0 | 0.579 | 1.305 |
1 | JAFARMADAR S, TAGHAVIFAR H, TAGHAVIFAR H M, et al. Numerical assessment of flow dynamics for various DI diesel engine designs considering swirl number and uniformity index[J]. Energy Conversion and Management, 2016, 110: 347–355. |
2 | RAMESH N, MALLIKARJUNA J. Evaluation of in⁃cylinder mixture homogeneity in a diesel HCCI engine-a CFD analysis[J]. Engineering Science and Technology, 2016, 19(2): 917-925. |
3 | 马宏伟, 贺象, 张晶辉, 等. 发动机缸内流动显示试验研究[J]. 汽车工程, 2014, 36(3): 277-281. |
MA H W, HE X , ZH J H, et al. Experimental research on flow display in engine cylinder[J]. Automotive Engineering, 2014, 36(3): 277-281. | |
4 | LI X R, ZHAO W H, GAO H B, et al. Fuel and air mixing characteristics of wall⁃flow⁃guided combustion systems under a low excess air ratio condition in direct injection diesel engines[J]. Energy,2019,175:554-566. |
5 | 张韦, 赵罗锋, 陈朝辉, 等. 双进气道柴油机丝线法可视化稳流测试及缸内气流运动特性分析[J]. 汽车工程, 2019, 41(10): 1130-1137. |
ZHANG W, ZHAO L F, CHEN C H, et al. Visualized steady flow test and in⁃cylinder air flow characteristics analysis of dual⁃intake diesel engine with silk⁃line method[J]. Automotive Engineering, 2019, 41(10): 1130-1137. | |
6 | WANG G X, YU W B, LI X B, et al. Experimental and numerical study on the influence of intake swirl on fuel spray and in⁃cylinder combustion characteristics on large bore diesel engine [J]. Fuel, 2019, 237: 209-221. |
7 | SADEQ A M, BASSIONY M A, ELBASHIR A M, et al. Combustion and emissions of a diesel engine utilizing novel intake manifold designs and running on alternative fuels[J]. Fuel, 2019, 255. |
8 | WANG G X, YU W B, LI X B, et al. Study on dynamic characteristics of intake system and combustion of controllable intake swirl diesel engine[J]. Energy, 2019, 180: 1008-1018. |
9 | BENAJES J, OLMEDA P, MARTIN J, et al. Evaluation of swirl effect on the global energy balance of a diesel engine[J]. Energy, 2017, 122: 168-181. |
10 | TOKUDA S, KUBOTA M, NOGUCHI Y. Development of CFD shape optimization technology using the adjoint method and its application to engine intake port design[J]. SAE International Journal of Engines, 2013, 6(2): 833-842. |
11 | HE C. Helical intake port design and experimental analysis of horizontal diesel engine[C] International Conference on Digital Manufacturing & Automation. IEEE, 2011, 144: 576-580. |
12 | 马雷, 王明露, 陈珂. 基于重要工况点的柴油机逐点模型标定[J]. 汽车工程, 2019, 41(1): 21-28. |
MA L, WANG M L, CHEN K. Point⁃by⁃point model calibration of diesel engine based on important operating points[J]. Automotive Engineering, 2019, 41(1): 21-28. | |
13 | 赖晨光, 陈永燕, 王媛, 等. 某柴油发动机缸内燃烧的数值模拟及优化分析[J].重庆理工大学学报(自然科学), 2017, 31(6): 23-30. |
LAI C G, CHEN Y Y, WANG Y, et al. Numerical simulation and optimization analysis of in⁃cylinder combustion of a diesel engine[J].Journal of Chongqing University of Technology (Natural Science), 2017,31(6): 23-30. | |
14 | 朱茂桃, 钱洋, 顾娅欣, 等. 基于Kriging模型的车门刚度和模态优化[J]. 汽车工程, 2013, 35(11): 1047-1050,1042. |
ZHU M T, QIAN Y, GU Y X, et al. Car door stiffness and modal optimization based on Kriging model[J]. Automotive Engineering, 2013, 35(11): 1047-1050,1042. | |
15 | 刘福水, 康宁, 徐洋, 等. 增压柴油机气道流量系数评价与稳流特性研究[J]. 农业机械学报, 2017, 48(6): 341-348. |
LIU F S, KANG N, XU Y, et al. Evaluation of flow coefficient and steady flow characteristics of turbocharged diesel engine air passage[J]. Transactions of the Chinese Society of Agricultural Machinery, 2017, 48(6): 341-348. | |
16 | BENAJES J, NOVELLA R, GOMEA-AORIANO J, et al. Computational assessment towards understanding the energy conversion and combustion process of lean mixtures in passive pre⁃chamber ignited engines[J]. Applied Thermal Engineering, 2020, 178. |
17 | 李玉峰, 王子玉, 姜莉, 等. 柴油机进气道流动特性评价的新方法[J]. 内燃机工程, 2015, 36(6): 53-59. |
LI Y F, WANG Z Y, JIANG L, et al. A new method for evaluating the flow characteristics of the intake port of a diesel engine[J]. Internal Combustion Engine Engineering, 2015, 36(6): 53-59. |
[1] | Yixiao Zhang,Xiao Ma,Xinhui Lu,Zhi Wang,Weilin Zhuge,Shijin Shuai. An Investigation on Intake Preheating Characteristics Based on Spray Wall Impinging Ignition for Diesel Engine [J]. Automotive Engineering, 2023, 45(8): 1489-1498. |
[2] | Shaohua Liu,Haochuan Dong,Lizhong Shen. Study on Construction of Diesel Combustion Mechanism Based on Soot Particle Size Distribution Prediction and the Impact of Oxygen Concentration [J]. Automotive Engineering, 2023, 45(1): 93-103. |
[3] | Yinggang Shen,Weijie Shi,Huanrong Xiao,Ruimin Yang,Guisheng Chen,Kegang Bi. Experimental Research on the Effect of Catalyzed Diesel Particulate Filter Active Regeneration on Selective Catalytic Reduction Performance [J]. Automotive Engineering, 2022, 44(8): 1280-1288. |
[4] | Jun Wang,Lizhong Shen,Yuhua Bi,Jilin Lei. Effect of EGR Driven by VNT on Combustion and Emission of Light-Duty Diesel Engine at Different Altitudes [J]. Automotive Engineering, 2022, 44(7): 1088-1097. |
[5] | Huiyan Zhang,Xuyang Tang,Lei Shi,Kangyao Deng. Study on Altitude Self-adaption and Adjustment Capacity of Turbocharging System [J]. Automotive Engineering, 2022, 44(2): 256-263. |
[6] | Renxin Xiao,Daping Liang,Guisheng Chen,Shuang Liu. Experimental Study on Performance of China VI Diesel Engine at Different Altitudes [J]. Automotive Engineering, 2022, 44(12): 1926-1935. |
[7] | Guangzhao Yue,Zhenmao Sun,Guangdong Tian. Research on On⁃line Temperature Estimating Algorithm of SCR System [J]. Automotive Engineering, 2021, 43(9): 1308-1313. |
[8] | Xiping Liu,Jiesheng Fu,Longxin Du,Gaosheng Zhu Wenjian Guo. Analysis and Optimization Design of IPMSM with a Double⁃layer Permanent Magnet Structure of Electric Vehicles [J]. Automotive Engineering, 2021, 43(8): 1128-1135. |
[9] | Peng Liu,Jiafu Deng,Liyun Fan,Gang Wu,Lin Hu. Influences of Series and Parallel Permanent Magnet on Electromagnetic Force of Common Rail High⁃speed Solenoid Valve [J]. Automotive Engineering, 2021, 43(8): 1136-1142. |
[10] | Ruoyu Lu,Jie Hu,Ruinan Chen,Wencai Xu,Kai Cao. Cooperative Adaptive Cruise Control of Intelligent Vehicles Based on DMPC [J]. Automotive Engineering, 2021, 43(8): 1177-1186. |
[11] | Yingfeng Cai,Lü Zhijun,Xiaoqiang Sun,Hai Wang,Qingchao Liu,Long Chen,Chaochun Yuan. An Adaptive Cruise Control Scheme Based on Merging Behavior Recognition [J]. Automotive Engineering, 2021, 43(7): 1077-1087. |
[12] | Liang Hong,Gang Liu,Ruhai Ge. Multi⁃objective Optimization of Active Safety Airbag Based on the Injury Thresholds of 12⁃year⁃old Children [J]. Automotive Engineering, 2021, 43(6): 861-869. |
[13] | Ying Jin,Xinyong Qiao,Cheng Gu,Hao Guo,Chuming Ning. A Method for Fault Diagnosis of Fuel Injector of Diesel Engine Based on Res⁃CNN and Fuel Pressure Wave [J]. Automotive Engineering, 2021, 43(6): 943-951. |
[14] | Yuhua Bi,Xuexuan Nie,Shaohua Liu,Ben Xiao,Peng Wang,Lizhong Shen,Yiyuan Peng. Study on the Effects of Exhaust Temperature, Exhaust Flow Rate and Altitude on NOx Conversion Rate and NH3 Slip of SCR System [J]. Automotive Engineering, 2021, 43(3): 350-357. |
[15] | Zhifei Zhang,Tongtong Hu,Weichun Fan,Changjin Wang,Ruiwen Huang. Design Optimization of Vehicle Seats for Pull Safety Performance [J]. Automotive Engineering, 2021, 43(2): 218-225. |
|