Automotive Engineering ›› 2021, Vol. 43 ›› Issue (6): 943-951.doi: 10.19562/j.chinasae.qcgc.2021.06.019
Ying Jin1,Xinyong Qiao1(),Cheng Gu1,Hao Guo2,Chuming Ning3
Received:
2020-10-30
Revised:
2021-01-20
Online:
2021-06-25
Published:
2021-06-29
Contact:
Xinyong Qiao
E-mail:qxyaafe@sina.com
Ying Jin,Xinyong Qiao,Cheng Gu,Hao Guo,Chuming Ning. A Method for Fault Diagnosis of Fuel Injector of Diesel Engine Based on Res⁃CNN and Fuel Pressure Wave[J].Automotive Engineering, 2021, 43(6): 943-951.
1 | 乔新勇,刘东利,康葳,等. 基于压力波的柴油机喷油器故障诊断研究[J].无损检测,2004,26(4):180-189. |
QIAO X Y, LIU D L, KANG W, et al. Research on fault diagnosis for diesel injector based on fuel pressure waves[J]. Nondestructive Testing, 2004,26(4):180-189. | |
2 | 马超,王伏,龚笑舞,等.一种共轨喷油器故障诊断策略开发[J].现代车用动力,2016,3:49-53. |
MA C, WANG F, GONG X W, et al. Development of a diagnostic strategy for common rail injector[J]. Modern Vehicle Power, 2016,3:49-53. | |
3 | 王金鑫,王忠巍,马修真,等. 柴油机燃油系统多故障的解耦与诊断技术[J].控制与决策,2019, 34(10):2249-2255. |
WANG J X, WANG Z W, MA X Z, et al. Decoupling and diagnosis of multi⁃fault of diesel engine fuel system[J]. Control and Decision, 2019, 34(10):2249-2255. | |
4 | 孙宜权,王滨,张英堂,等. 基于自适应平行因子的柴油机喷油故障诊断研究[J]. 兵工学报,2013,34(5):519-526. |
SUN Y Q, WANG B, ZHANG Y T, et al. Study of fault diagnosis of diesel engine fuel injection based on adaptive parallel factor[J]. Acta Armamentarii, 2013, 34(5):519-526. | |
5 | 崔海英,石秀华,王文斌,等. 基于LMBP算法的柴油机喷油器故障诊断[J].振动、测试与诊断,2009,29(4):466-469,481. |
CUI H Y, SHI X H, WANG W B, et al. Fault diagnosis of diesel injector using levenberg⁃marquardt back propagation algorithm[J]. Journal of Vibration, Measurement and Diagnosis, 2009, 29(4):466-469,481. | |
6 | 曹继平,王赛,岳小丹,等.基于自适应深度卷积神经网络的发射车滚动轴承故障诊断研究[J].振动与冲击,2020,39(5):97-104. |
CAO J P, WANG S, YUE X D, et al. Rolling bearing fault diagnosis of launch vehicle based on adaptive deep CNN[J]. Journal of Vibration and Shock,2020,39(5):97-104. | |
7 | 朱丹宸, 张永祥, 潘洋洋,等.基于多传感器信号和卷积神经网络的滚动轴承故障诊断[J].振动与冲击,2020,39(4):172-178. |
ZHU D C, ZHANG Y X, PAN Y Y, et al. Fault diagnosis for rolling element bearings based on multi⁃sensor signals and CNN[J].Journal of Vibration and Shock, 2020,39(4):172-178. | |
8 | 宫文峰, 陈辉, 张美,等.基于深度学习的电机轴承微小故障智能诊断方法[J].仪器仪表学报,2020,41(1):195-205. |
GONG W F, CHEN H, ZHANG M, et al. Intelligent diagnosis method for incipient fault of motor bearing based on deep learning[J]. Chinese Journal of Scientific Instrument, 2020,41(1):195-205. | |
9 | 黄鑫, 陈仁祥, 黄钰. 卷积神经网络在机械设备故障诊断领域应用与挑战[J]. 设计与研究, 2019(1):96-100. |
HUANG X,CHEN R X,HUANG Y. Convolution neural networks for mechanical equipment fault diagnosis: the application and challenge[J]. Desing and Research, 2019(1):96-100. | |
10 | 朱会杰,王新晴,芮挺,等. 基于平移不变CNN 的机械故障诊断研究[J]. 振动与冲击, 2019, 38(5):45-52. |
ZHU H J,WANG X Q,RUI T,et al. Machinery fault diagnosis based on shift invariant CNN[J]. Journal of Vibration and Shock, 2019, 38(5):45-52. | |
11 | 郁磊,史峰,王辉,等.MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社,2015:250-256. |
YU L, SHI F, WANG H, et al. Analysis of 30 cases of MATLAB intelligent algorithm[M].Beijing: Beijing University of Aeronautics and Astronautics Press,2015: 250-256. | |
12 | 周兴康,余剑波. 基于深度一维残差卷积自编码网络的齿轮箱故障诊断[J]. 机械工程学报,2020,56(7): 96-108. |
ZHOU X K, YU J B. Gearbox fault diagnosis based on one⁃dimension residual convolutional auto⁃encoder[J]. Journal of Mechanical Engineering, 2020,56(7): 96-108. | |
13 | 魏秀参.解析深度学习:卷积神经网络原理与视觉实践[M].北京:电子工业出版社,2018:32-33. |
WEI X C. Analytical deep learning: Principles of convolutional neural networks and visual practice[M].Beijing:Electronic Industry Press,2018:32-33. | |
14 | 韩涛,袁建虎,唐建,等. 基于MWT 和CNN 的滚动轴承智能复合故障诊断方法[J].机械传动, 2016,40(12):139-143. |
HAN T, YUAN J H, TANG J, et al. An approach of intelligent compound fault diagnosis of rolling bearing based on MWT and CNN[J]. Journal Mechanical Transmission, 2016,40(12):139-143. | |
15 | 吴魁,王仙勇,孙洁, 等. 基于深度卷积网络的多传感器信号故障诊断方法研究[J].计算机测量与控制,2018,26(1):18-21. |
WU K, WANG X Y, SUN J, et al. Study of multi⁃sensor fault diagnose method based on convolutional neural networks[J]. Computer Measurement & Control, 2018,26(1):18-21. | |
16 | 高清春,胡甫才.基于变分模态和奇异值分解的柴油机气门间隙故障诊断方法研究[J].武汉理工大学学报,2019,43(4):746-751. |
GAO Q C, HU P C. Research on the fault diagnosis method of diesel engine valve clearance based on vibrational mode and singular value decomposition[J]. Journal of Wuhan University of Technology, 2019,43(4):746-751. | |
17 | 吴建波,王春艳,洪华军,等. 基于极限学习机的船舶柴油机故障诊断[J].计算机工程与应用,2019, 55(15):147-152. |
WU J B,WANG C Y,HONG H J, et al. Fault diagnosis of marine diesel engine based on extreme learning machine[J]. Computer Engineering and Applications, 2019, 55(15):147-152. | |
18 | YOO H J. Deep convolution neural networks in computer vision: A review [J]. IEIE Transactions on Smart Processing and Computing,2015,4(1):35-43. |
[1] | Ze Gao, Zunkang Chu, Jiasheng Shi, Fu Lin, Weixiong Rao, Haiyan Yu. Research on Fast Prediction Method of Stress Field of Automotive Parts Based on Graph Network [J]. Automotive Engineering, 2024, 46(1): 170-178. |
[2] | Pengbo Zhang, Renxiang Chen, Yiming Shao, Shizheng Sun, Kaibo Yan. Research Review of Fault Diagnosis for Electric Drive Powertrain System of Pure Electric Vehicles [J]. Automotive Engineering, 2024, 46(1): 61-74. |
[3] | Weiguo Liu,Zhiyu Xiang,Rui Liu,Guodong Li,Zixu Wang. Research on End-to-End Vehicle Motion Planning Method Based on Deep Learning [J]. Automotive Engineering, 2023, 45(8): 1343-1352. |
[4] | Yixiao Zhang,Xiao Ma,Xinhui Lu,Zhi Wang,Weilin Zhuge,Shijin Shuai. An Investigation on Intake Preheating Characteristics Based on Spray Wall Impinging Ignition for Diesel Engine [J]. Automotive Engineering, 2023, 45(8): 1489-1498. |
[5] | Lei Zhang, Keren Guan, Xiaolin Ding, Pengyu Guo, Zhenpo Wang, Fengchun Sun. Tire-Road Friction Estimation Method Based on Image Recognition and Dynamics Fusion [J]. Automotive Engineering, 2023, 45(7): 1222-1234. |
[6] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
[7] | Xia Zhao,Zhao Li,Rui Fu,Zhenzhen Ge,Chang Wang. Real-Time Detection of Distracted Driving Behavior Based on Deep Convolution-Tokens Dimensionality Reduction Optimized Visual Transformer Model [J]. Automotive Engineering, 2023, 45(6): 974-988. |
[8] | Yanyan Chen,Hai Wang,Yingfeng Cai,Long Chen,Yicheng Li. Efficient Automatic Driving Instance Segmentation Method Based on Detection [J]. Automotive Engineering, 2023, 45(4): 541-550. |
[9] | Fengchong Lan,Jikai Chen,Jiqing Chen,Xinping Jiang,Zihan Li,Wei Pan. Research on Lithium Battery Remaining Useful Life Prediction Method Driven by Real Vehicle Data [J]. Automotive Engineering, 2023, 45(2): 175-182. |
[10] | Linhui Li,Xinliang Zhang,Yifan Fu,Jing Lian,Jiaxu Ma. Research on Visible Light and Infrared Post-Fusion Detection Based on TC-YOLOv7 Algorithm [J]. Automotive Engineering, 2023, 45(12): 2280-2290. |
[11] | Xiaojun Zhang,Jingzhe Xi,Yanlei Shi,Anlu Yuan. Lightweight YOLOv7-R Algorithm for Road-Side View Target Detection [J]. Automotive Engineering, 2023, 45(10): 1833-1844. |
[12] | Jichao Hong,Fengwei Liang,Haixu Yang,Kerui Li. Research on Intelligent Safety Management and Control Methods for Big-data-driven Battery Systems [J]. Automotive Engineering, 2023, 45(10): 1845-1861. |
[13] | Jie Hu,Yuanjie Li,Hao Geng,Huangzheng Geng,Xiong Guo,Hongwei Yi. Construction of Vehicle Fault Knowledge Graph Based on Deep Learning [J]. Automotive Engineering, 2023, 45(1): 52-60. |
[14] | Shaohua Liu,Haochuan Dong,Lizhong Shen. Study on Construction of Diesel Combustion Mechanism Based on Soot Particle Size Distribution Prediction and the Impact of Oxygen Concentration [J]. Automotive Engineering, 2023, 45(1): 93-103. |
[15] | Jie Hu,Boyuan Xu,Zongquan Xiong,Minjie Chang,Di Guo,Lihao Xie. Cross-Domain Object Detection Algorithm Based on Multi-scale Mask Classification Domain Adaptive Network [J]. Automotive Engineering, 2022, 44(9): 1327-1338. |