Automotive Engineering ›› 2023, Vol. 45 ›› Issue (1): 93-103.doi: 10.19562/j.chinasae.qcgc.2023.01.011
Special Issue: 发动机&排放专题2023年
Previous Articles Next Articles
Shaohua Liu(),Haochuan Dong,Lizhong Shen
Received:
2022-07-18
Revised:
2022-08-14
Online:
2023-01-25
Published:
2023-01-18
Contact:
Shaohua Liu
E-mail:liushaohua183@126.com
Shaohua Liu,Haochuan Dong,Lizhong Shen. Study on Construction of Diesel Combustion Mechanism Based on Soot Particle Size Distribution Prediction and the Impact of Oxygen Concentration[J].Automotive Engineering, 2023, 45(1): 93-103.
1 | OMIDVARBORNA H, KUMAR A, KIM D. Characterization of particulate matter emitted from transit buses fueled with B20 in idle modes [J]. Journal of Environmental Chemical Engineering, 2015, 2(4): 2335-2342. |
2 | MILLER K A, SISCOVICK D S, SHEPPARD L, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women [J]. New England Journal of Medicine, 2007, 356(5): 447-458. |
3 | HANSEN J, NAZARENKO L. Soot climate forcing via snow and ice albedos [J]. Proceedings of the National Academy of Sciences, 2003, 101(2): 423-428. |
4 | APPEL J, BOCKHORN H, WULKOW M. A detailed numerical study of the evolution of soot particle size distributions in laminar premixed flames [J]. Chemosphere, 2001, 42(5-7): 635-645. |
5 | PAYRI F, BENAJES J, NOVELLA R, et al. Effect of intake oxygen concentration on particle size distribution measurements from diesel low temperature combustion [J]. SAE International Journal of Engines, 2011, 4(1):1888-1902. |
6 | ABID A D, CAMACHO J, SHEEN D A, et al. Quantitative measurement of soot particle size distribution in premixed flames - the burner-stabilized stagnation flame approach [J]. Combustion and Flame, 2009, 156(10): 1862-1870. |
7 | 邵灿. 甲烷、乙烷、丙烷掺混对乙烯层流预混火焰中初生碳烟颗粒生成的影响研究[D]. 上海: 上海交通大学, 2017. |
SHAO C. Effect of methane, ethane and propane doping on nascent soot formation in ethylene-based laminar premixed flames [D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
8 | 武政杰,张立淼,张智轩,等.基于矩量投影法的碳烟颗粒破碎过程数值模拟[J].内燃机学报,2021,39(6):539-545. |
WU Z J, ZHANG L M, ZHANG Z X, et al. Numerical study on the soot fragmentation process based on an advanced moment projection method [J]. Transactions of CSICE, 2021,39(6):539-545. | |
9 | QIU L, CHENG X, WANG X, et al. Development of a reduced n-decane/α-methylnaphthalene/polycyclic aromatic hydrocarbon mechanism and its application for combustion and soot prediction [J]. Energy & Fuels, 2016, 30(12): 10875-10885. |
10 | HOU J, YAN F, LEE T H, et al. Computational investigation on soot mechanism of diesel and diesel/n-butanol blend in constant volume chamber with various ambient temperatures [J]. Energy & Fuels, 2017, 31(1): 916-931. |
11 | BI X, QIAO X, LEE C F. Investigation about temperature effects on soot mechanisms using a phenomenological soot model of real biodiesel [J]. Energy & Fuels, 2013, 27(9): 5320-5331. |
12 | TAO F, FOSTER D, REITZ R. Soot structure in a conventional non-premixed diesel flame [C]. SAE Paper 2006-01-0196. |
13 | 生态环境部. 车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段): GB 17691—2005 [S]. 北京: 中国环境科学出版社, 2005. |
Ministry of Ecology and Environment. Limits and measurement methods for exhaust pollutants from compression ignition and gas-fuelled positive ignition engines of vehicles (Ⅲ, Ⅳ, Ⅴ): GB 17691—2005 [S]. Beijing: China Environmental Science Press, 2005. | |
14 | DREYER J A H, POLI M, EAVES N A, et al. Evolution of the soot particle size distribution along the centreline of an n-heptane/toluene co-flow diffusion flame [J]. Combustion and Flame, 2019, 209(1-2): 256-266. |
15 | ZHANG Q, GUO H, LIU F, et al. Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model[J]. Proceedings of the Combustion Institute, 2009, 32(1): 761-768. |
16 | GLEASON K, CARBONE F, GOMEZ A. Effect of equivalence ratio and temperature on soot formation in partially premixed counterflow flames [J]. Combustion and Flame, 2022, 242(1): 112088. |
17 | CHU H Q, YAN Y, XIANG L K, et al. Effect of oxygen-rich combustion on soot formation in laminar co-flow propane diffusion flames [J]. Journal of the Energy Institute, 2020, 93(2):822-832. |
18 | 车显达. 柴油机富氮富氧进气变组分可控性研究[D].长春:吉林大学, 2014. |
CHE X D. Controllability of variable composition of nitrogen-rich or oxygen-rich intake-air in the diesel engine [D]. Changchun: Jilin University, 2014. | |
19 | KARIMI M, WANG X L, HAMILTON J, et al. Numerical investigation on hydrogen-diesel dual-fuel engine improvements by oxygen enrichment [J]. International Journal of Hydrogen Energy, 2022, 47(60):25418-25432. |
20 | GUIBET J C, FAURE-BIRCHEM E. Fuels and engines: technology energy environment [M]. Paris: Editions Technips, 1999. |
21 | CURRAN H J, GAFFURI P, PITZ W J, et al. A comprehensive modeling study of n-heptane oxidation [J]. Combustion and Flame, 1998, 114(1-2): 149-177. |
22 | GUSTAVSSON J, GOLOVITCHEV V I. Spray combustion simulation based on detailed chemistry approach for diesel fuel surrogate model [C]. SAE Paper 2003-01-1848. |
23 | CHEN W, SHUAI S, WANG J. A soot formation embedded reduced reaction mechanism for diesel surrogate fuel [J]. Fuel, 2009, 88(10): 1927-1936. |
24 | 雒婧,尧命发.正庚烷甲苯混合物燃烧简化机理分析[J].燃烧科学与技术, 2012, 18(4)3:367-374. |
LUO J, YAO M F. Reduced combustion mechanism of n-heptane/toluene mixtures [J]. Journal of Combustion Science and Technology, 2012, 18(4):367-374. | |
25 | HARTMANN M, GUSHTEROVA I, FIKRI M, et al. Auto-ignition of toluene-doped n-heptane and iso-octane/air mixtures: High-pressure shock-tube experiments and kinetics modeling [J]. Combustion and Flame, 2011, 158(1): 172-178. |
26 | WANG H, JIAO Q, YAO M, et al. Development of an n-heptane/toluene/polyaromatic hydrocarbon mechanism and its application for combustion and soot prediction [J]. International Journal of Engine Research, 2013, 14(5): 434-451. |
27 | SLAVINSKAYA N A, RIEDEL U, DWORKIN S B, et al. Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames [J]. Combustion and Flame, 2012, 159(3): 979-995. |
28 | SMITH G P,GOLDEN D M,FRENKLACH M,et al GRI-Mech 3.0 [EB/OL]. (1999-7-30)[2022-7-25]. http://combustion.berkeley.edu/gri-mech/version30/text30.html. |
29 | VISHWANATHAN G,REITZ R. Application of a semi-detailed soot modeling approach for conventional and low temperature diesel combustion-part Ⅰ:model performance [J]. Fuel,2015,139(1):757-770. |
30 | APPEL J, BOCKHORN H, FRENKLACH M. Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons [J]. Combustion and Flame, 2000, 121(1-2): 122-136. |
31 | WALLS J R, STRICKLAND-CONSTABLE R F. Oxidation of carbon between 1000-2400°C [J]. Carbon, 1964, 1(3): 333-338. |
32 | NEOH K G, HOWARD J B, SAROFIM A F. Effect of oxidation on the physical structure of soot [J]. Symposium (International) on Combustion, 1985, 20(1): 951-957. |
33 | FRENKLACH M, HARRIS S J. Aerosol dynamics modeling using the method of moments [J]. Journal of Colloid and Interface Science, 1987, 118(1): 252-261. |
34 | CHONG C T, HOCHGREB S. Measurements of laminar flame speeds of liquid fuels: Jet-A1, diesel, palm methyl esters and blends using particle imaging velocimetry (PIV) [J]. Proceedings of the Combustion Institute, 2011, 33(1): 979-986. |
35 | JI C, EGOLFOPOULOS F N. Flame propagation of mixtures of air with binary liquid fuel mixtures [J]. Proceedings of the Combustion Institute, 2011, 33(1): 955-961. |
36 | DAVIS S G, LAW C K. Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons [J]. Combustion Science and Technology, 1998, 140(1-6): 427-449. |
37 | CASTALDI M J, MARINOV N M, MELIUS C F, et al. Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame [J]. Symposium (International) on Combustion, 1996, 26(1): 693-702. |
38 | KNYAZKOV D A, SLAVINSKAYA N A, DMITRIEV A M, et al. Structure of an n-heptane/toluene flame: molecular beam mass spectrometry and computer simulation investigations [J]. Combustion, Explosion, and Shock Waves, 2016, 52(2): 142-154. |
39 | TANG Q, GE B, NI Q, et al. Soot formation characteristics of n-heptane/toluene mixtures in laminar premixed burner-stabilized stagnation flames [J]. Combustion and Flame, 2018, 187(1): 239-246. |
40 | 孔德彧,林柏洋,顾晨,等.层流预混乙烯火焰中碳烟颗粒物的粒径分布[J].燃烧科学与技术,2015,21(6):537-542. |
KONG D Y, LIN B Y, GU C, et al. Soot particle diameter distribution in laminar premixed ethylene flame [J]. Journal of Combustion Science and Technology, 2015,21(6):537-542. | |
41 | ZHANG Y, GHANDHI J, ROTHAMER D. Comparison of particulate size distributions from advanced and conventional combustion - part I: CDC, HCCI, and RCCI [J]. SAE International Journal of Engines, 2014, 7(2): 820-834. |
[1] | Yixiao Zhang,Xiao Ma,Xinhui Lu,Zhi Wang,Weilin Zhuge,Shijin Shuai. An Investigation on Intake Preheating Characteristics Based on Spray Wall Impinging Ignition for Diesel Engine [J]. Automotive Engineering, 2023, 45(8): 1489-1498. |
[2] | Yinggang Shen,Weijie Shi,Huanrong Xiao,Ruimin Yang,Guisheng Chen,Kegang Bi. Experimental Research on the Effect of Catalyzed Diesel Particulate Filter Active Regeneration on Selective Catalytic Reduction Performance [J]. Automotive Engineering, 2022, 44(8): 1280-1288. |
[3] | Jun Wang,Lizhong Shen,Yuhua Bi,Jilin Lei. Effect of EGR Driven by VNT on Combustion and Emission of Light-Duty Diesel Engine at Different Altitudes [J]. Automotive Engineering, 2022, 44(7): 1088-1097. |
[4] | Huiyan Zhang,Xuyang Tang,Lei Shi,Kangyao Deng. Study on Altitude Self-adaption and Adjustment Capacity of Turbocharging System [J]. Automotive Engineering, 2022, 44(2): 256-263. |
[5] | Renxin Xiao,Daping Liang,Guisheng Chen,Shuang Liu. Experimental Study on Performance of China VI Diesel Engine at Different Altitudes [J]. Automotive Engineering, 2022, 44(12): 1926-1935. |
[6] | Guangzhao Yue,Zhenmao Sun,Guangdong Tian. Research on On⁃line Temperature Estimating Algorithm of SCR System [J]. Automotive Engineering, 2021, 43(9): 1308-1313. |
[7] | Peng Liu,Jiafu Deng,Liyun Fan,Gang Wu,Lin Hu. Influences of Series and Parallel Permanent Magnet on Electromagnetic Force of Common Rail High⁃speed Solenoid Valve [J]. Automotive Engineering, 2021, 43(8): 1136-1142. |
[8] | Ying Jin,Xinyong Qiao,Cheng Gu,Hao Guo,Chuming Ning. A Method for Fault Diagnosis of Fuel Injector of Diesel Engine Based on Res⁃CNN and Fuel Pressure Wave [J]. Automotive Engineering, 2021, 43(6): 943-951. |
[9] | Wei Zhang,Libing Xie,Zhaohui Chen,Mayi Zhou,Yong Chen,Jiwen Fan,Li Tao. Multi⁃objective Optimization Design of Key Structural Parameters of Spiral Section of Helical Inlet [J]. Automotive Engineering, 2021, 43(3): 337-344. |
[10] | Yuhua Bi,Xuexuan Nie,Shaohua Liu,Ben Xiao,Peng Wang,Lizhong Shen,Yiyuan Peng. Study on the Effects of Exhaust Temperature, Exhaust Flow Rate and Altitude on NOx Conversion Rate and NH3 Slip of SCR System [J]. Automotive Engineering, 2021, 43(3): 350-357. |
[11] | Yi Dong,Jianmin Liu,Pu Li,Yanbin Liu,Xinyong Qiao. Research on Prediction of State Parameters and Structure Optimization of Diesel Engine Cylinder Gasket [J]. Automotive Engineering, 2021, 43(2): 232-240. |
[12] | Dongdong Chen,Tie Wang,Guoxing Li,Tianyou Qiao,Zhenning Hou. Effect of PODE Mixing on Emission Characteristics of Hybrid Diesel Engines Under Transient Conditions [J]. Automotive Engineering, 2021, 43(11): 1638-1644. |
[13] | Qing Li,Guisheng Chen,Ying Luo,Ru He,Han Zhang,Weijie Shi. Experimental Research on Key Influencing Factors of Regenerative Characteristics of Silicon Carbide CDPF [J]. Automotive Engineering, 2021, 43(10): 1479-1487. |
[14] | Shi Xiuyong, Jiang Degang, Liang Yunfang, Liang Pengfei. Study of DPF Carbon Load Prediction Model Based on Flow Resistance [J]. Automotive Engineering, 2020, 42(9): 1183-1188. |
[15] | Qiao Xinyong, Gu Cheng, Han Lijun. Diesel Engine Fault Diagnosis Method Based on VMD and Multi-Scale Dispersion Entropy [J]. Automotive Engineering, 2020, 42(8): 1139-1144. |