Automotive Engineering ›› 2022, Vol. 44 ›› Issue (3): 350-361.doi: 10.19562/j.chinasae.qcgc.2022.03.006
Special Issue: 智能网联汽车技术专题-感知&HMI&测评2022年
Previous Articles Next Articles
Yingfeng Cai1,Ziheng Lu1,Yicheng Li1,Long Chen1,Hai Wang2()
Received:
2021-10-09
Revised:
2021-11-06
Online:
2022-03-25
Published:
2022-03-25
Contact:
Hai Wang
E-mail:wanghai1019@163.com
Yingfeng Cai,Ziheng Lu,Yicheng Li,Long Chen,Hai Wang. Tightly Coupled SLAM System Based on Multi-Sensor Fusion[J].Automotive Engineering, 2022, 44(3): 350-361.
"
方法 | 轨迹 距离/m | 数据集序列(RPE 平移(%)/ RPE 旋转((°)·100 m-1)) | 均值 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
KITTI 00 城镇 | KITTI 01 高速 | KITTI 05 郊区 | KITTI 06 城镇 | KITTI 07 城镇 | KITTI 08 城镇 | KITTI 09 城镇 | KITTI 10 郊区 | |||
本文方法 | 100 | 1.06/0.60 | 1.28/0.65 | 0.67/0.46 | 0.68/0.75 | 0.69/0.48 | 1.24/0.55 | 0.91/0.49 | 0.83/0.68 | 0.92/0.49 |
200 | 0.97/0.57 | 1.26/0.62 | 0.80/0.40 | 0.59/0.62 | 0.74/0.27 | 1.15/0.43 | 1.13/0.48 | 0.67/0.56 | ||
300 | 0.76/0.43 | 1.00/0.79 | 0.99/0.35 | 0.74/0.50 | 0.79/0.22 | 1.19/0.40 | 1.19/0.39 | 1.12/0.44 | ||
400 | 0.70/0.22 | 1.02/0.65 | 0.67/0.27 | 0.41/0.48 | 1.24/0.35 | 1.17/0.39 | 0.94/0.69 | |||
LIMO | 100 | 1.11/0.58 | 2.31/0.76 | 1.07/1.18 | 3.01/0.68 | 1.40/1.04 | 1.68/1.02 | 1.26/1.29 | 1.02/0.77 | 1.57/0.71 |
200 | 1.18/0.45 | 2.57/0.72 | 1.05/0.87 | 2.50/0.44 | 1.31/0.53 | 1.48/0.85 | 1.62/1.15 | 0.91/0.58 | ||
300 | 1.09/0.34 | 2.91/0.63 | 1.17/0.59 | 1.87/0.28 | 1.45/0.56 | 1.47/0.97 | 1.66/0.90 | 1.07/0.91 | ||
400 | 1.19/0.36 | 3.08/0.61 | 1.04/0.31 | 0.81/0.30 | 1.17/0.52 | 2.26/0.86 | 0.99/0.90 | |||
LIO-SAM | 100 | 1.51/0.90 | 1.57/1.39 | 0.99/0.94 | 0.94/0.67 | 1.37/0.53 | 1.63/1.01 | 1.05/0.92 | 0.92/0.90 | 1.35/0.74 |
200 | 1.22/0.59 | 2.08/1.33 | 0.97/0.63 | 0.94/0.65 | 1.25/0.58 | 1.51/0.80 | 1.27/0.78 | 0.81/0.74 | ||
300 | 1.20/0.44 | 2.48/1.21 | 1.06/0.53 | 2.11/0.65 | 1.17/0.53 | 1.41/0.64 | 1.29/0.65 | 1.19/0.65 | ||
400 | 1.00/0.45 | 2.90/1.07 | 0.75/0.25 | 1.50/0.55 | 1.34/0.48 | 1.46/0.65 | 1.11/0.82 | |||
VINS-Mono | 100 | 3.19/0.74 | 25.85/1.25 | 5.25/0.53 | 5.87/1.47 | 11.55/0.98 | 7.46/0.58 | 10.73/0.79 | 9.96/0.64 | |
200 | 2.84/0.55 | 31.41/1.10 | 4.09/0.37 | 4.80/0.14 | 10.68/0.76 | 7.38/0.60 | 9.32/0.50 | |||
300 | 2.37/0.41 | 30.38/1.01 | 2.58/0.28 | 5.68/1.10 | 8.99/0.55 | 6.17/0.43 | 8.06/0.50 | |||
400 | 1.86/0.33 | 39.54/0.89 | 1.24/0.32 | 7.54/0.33 | 7.10/0.41 | 7.12/0.37 | ||||
LOAM | 100 | 1.69/1.04 | 2.25/1.24 | 1.16/1.19 | 0.99/0.86 | 1.39/0.50 | 11.55/0.98 | 1.56/1.62 | 0.91/1.96 | 2.88/1.03 |
200 | 1.52/0.61 | 2.85/0.18 | 1.12/1.02 | 1.16/0.85 | 1.70/0.54 | 10.68/0.76 | 1.57/1.98 | 1.36/1.56 | ||
300 | 1.54/0.46 | 3.43/1.01 | 1.10/1.13 | 1.68/0.68 | 2.07/0.59 | 8.99/0.55 | 3.98/2.05 | 1.65/1.68 | ||
400 | 1.42/0.50 | 3.86/0.85 | 1.45/0.98 | 1.38/0.70 | 7.54/0.33 | 4.27/1.95 | 1.45/1.44 |
1 | BAILEY T, DURRANT-WHYTE H. Simultaneous localization and mapping (SLAM): part II [J]. IEEE Robotics & Automation Magazine, 2006, 13(3): 108-117. |
2 | 王海, 李洋, 蔡英凤,等. 基于激光雷达的3D实时车辆跟踪 [J]. 汽车工程, 2021, 43(7): 1013-1021. |
WANG H, LI Y, CAI Y, et al. 3D real⁃time vehicle tracking based on lidar[J]. Automotive Engineering, 2021, 43(7): 1013-1021. | |
3 | 娄新雨, 王海, 蔡英凤, 等. 采用64线激光雷达的实时道路障碍物检测与分类算法的研究 [J]. 汽车工程, 2019, 41(7): 779-784. |
LOU Xinyu, WANG Hai, CAI Yingfeng, et al. A research on an algorithm for real-time detection and classification of road obstacle by using 64-line lidar[J]. Automotive Engineering, 2019, 41(7): 779-784. | |
4 | MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM: a versatile and accurate monocular SLAM system [J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163. |
5 | MUR-ARTAL R, TARDóS J D. Orb-slam2: an open-source slam system for monocular, stereo, and rgb-d cameras [J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262. |
6 | LEVINSON J, ASKELAND J, BECKER J, et al. Towards fully autonomous driving: systems and algorithms[C]. Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV). |
7 | ZHANG J, SINGH S. Low-drift and real-time lidar odometry and mapping [J]. Autonomous Robots, 2017, 41(2): 401-416. |
8 | 李兴佳, 李建芬, 朱敏,等. 基于无迹卡尔曼滤波的定位融合与校验算法研究 [J]. 汽车工程, 2021, 43(6): 825-832. |
LI Xingjia, LI Jianfen,ZHU Min, et al. Research on positioning fusion and verification algorithm based on UKF[J]. Automotive Engineering, 2021, 43(6): 825-832. | |
9 | YE H, CHEN Y, LIU M. Tightly coupled 3d lidar inertial odometry and mapping[C]. 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 3144-3150. |
10 | MOURIKIS A I, ROUMELIOTIS S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]. Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE, 2007: 3565-3572. |
11 | SUN K, MOHTA K, PFROMMER B, et al. Robust stereo visual inertial odometry for fast autonomous flight [J]. IEEE Robotics and Automation Letters, 2018, 3(2): 965-972. |
12 | XU W, ZHANG F. Fast-lio: a fast, robust lidar-inertial odometry package by tightly-coupled iterated kalman filter [J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3317-3324. |
13 | LEUTENEGGER S, LYNEN S, BOSSE M, et al. Keyframe-based visual–inertial odometry using nonlinear optimization [J]. The International Journal of Robotics Research, 2015, 34(3): 314-334. |
14 | LOELIGER HA, DAUWELS J, HU J, et al. The factor graph approach to model-based signal processing [J]. Proceedings of the IEEE, 2007, 95(6): 1295-1322. |
15 | QIN T, LI P, SHEN S. Vins-mono: a robust and versatile monocular visual-inertial state estimator [J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. |
16 | SHAN T, ENGLOT B, MEYERS D, et al. Lio-sam: tightly-coupled lidar inertial odometry via smoothing and mapping[C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 5135-5142. |
17 | FORSTER C, CARLONE L, DELLAERT F, et al. IMU preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation[C]. Georgia Institute of Technology, 2015. |
18 | FORSTER C, CARLONE L, DELLAERT F, et al. On-manifold preintegration for real-time visual-inertial odometry [J]. IEEE Transactions on Robotics, 2016, 33(1): 1-21. |
19 | GRAETER J, WILCZYNSKI A, LAUER M. Limo: lidar-monocular visual odometry[C]. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 7872-7879. |
20 | SHAO W, VIJAYARANGAN S, LI C, et al. Stereo visual inertial lidar simultaneous localization and mapping[C]. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 370-377. |
21 | SHAN T, ENGLOT B, RATTI C, et al. LVI-SAM: tightly-coupled lidar-visual-inertial odometry via smoothing and mapping [J]. arXiv preprint arXiv:, 2021. |
22 | GáLVEZ-LóPEZ D, TARDOS J D. Bags of binary words for fast place recognition in image sequences [J]. IEEE Transactions on Robotics, 2012, 28(5): 1188-9711. |
23 | GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset [J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. |
[1] | Xinke Fu,Yingfeng Cai,Long Chen,Hai Wang,Qingchao Liu. Decision-Making for Autonomous Driving in Uncertain Environment [J]. Automotive Engineering, 2024, 46(2): 211-221. |
[2] | Tao Lu,Xin Jin,Yifei Liao,Shengjie Huang,Yilin Yang,Guotao Xie,Xiaohui Qin. Visual SLAM Based on Jacobian Null-space Marginalization [J]. Automotive Engineering, 2023, 45(8): 1457-1467. |
[3] | Cheng Lin, Bowen Wang, Lü Peiyuan, Xinle Gong, Xiao Yu. Research on Motion Planning and Cooperative Control for Autonomous Vehicles with Lane Change Gaming Maneuvers Under the Curved Road [J]. Automotive Engineering, 2023, 45(7): 1099-1111. |
[4] | Xiaoqiang Sun, Yulin Wang, Weiwei Hu, Yingfeng Cai, Long Chen, Wong Pak Kin. Research on Estimation Strategy of Vehicle Driving State Based on Tire Piecewise Affine Identification Model [J]. Automotive Engineering, 2023, 45(7): 1212-1221. |
[5] | Jianhua Chen,Zhongming Xu,Zhifei Zhang. Suspension State Estimation Based on Wheelbase Preview at Variable Speed [J]. Automotive Engineering, 2023, 45(6): 1040-1049. |
[6] | Yanyan Chen,Hai Wang,Yingfeng Cai,Long Chen,Yicheng Li. Efficient Automatic Driving Instance Segmentation Method Based on Detection [J]. Automotive Engineering, 2023, 45(4): 541-550. |
[7] | Lü Ying,Xu Qi,Qiuzheng Liu,Xinyu Wang,Guoying Chen. Path Tracking Control Method with Steering Lag for Autonomous Vehicles [J]. Automotive Engineering, 2023, 45(12): 2234-2241. |
[8] | Zhengfa Liu,Ya Wu,Peigen Liu,Rongqi Gu,Guang Chen. Cross-Domain Object Detection for Intelligent Driving Based on Joint Distribution Matching of Features and Labels [J]. Automotive Engineering, 2023, 45(11): 2082-2091. |
[9] | Jie Hu,Ruipeng Chen,Zhihao Zhang,Bowen Xiang,Haoyan Liu,Qi Zhu,Qixiang Guo. Path Tracking Control of Autonomous Truck Based on RMPC [J]. Automotive Engineering, 2023, 45(11): 2092-2103. |
[10] | Long Chen,Chen Yang,Yingfeng Cai,Hai Wang,Yicheng Li. Pedestrian Crossing Intention Prediction Method Based on Multimodal Feature Fusion [J]. Automotive Engineering, 2023, 45(10): 1779-1790. |
[11] | Fengchong Lan,Yingjie Liu,Jiqing Chen,Zhaolin Liu. Study on Motion Planning of Autonomous Vehicles in Cut-in Scenes Based on Dynamic Game Algorithm [J]. Automotive Engineering, 2023, 45(1): 9-19. |
[12] | Cheng Lin,Jiang Yi,Yu Tian. State Estimation and Parameter Identification of Shifting Actuator of Automatic Transmission of Electric Vehicles [J]. Automotive Engineering, 2022, 44(8): 1237-1250. |
[13] | Jingwei Zhang,Tiejun Liu,Rengang Li,Dan Liu,Jinglin Zhan,Hongwei Kan. A Temporal Calibration Method for Multi-Sensor Fusion of Autonomous Vehicles [J]. Automotive Engineering, 2022, 44(2): 215-224. |
[14] | Qiu Xia,Te Chen,Long Chen,Xing Xu,Yingfeng Cai. Vehicle Sideslip Angle Estimation Method Based on Redundant Information Fusion [J]. Automotive Engineering, 2022, 44(2): 280-289. |
[15] | Chaoyang Jiang,Tianran Lan,Xiaoni Zheng,Jiulong Gao,Xuetong Ye. Distributed Multi-vehicle Collaborative Visual SLAM System [J]. Automotive Engineering, 2022, 44(12): 1809-1817. |