Automotive Engineering ›› 2022, Vol. 44 ›› Issue (9): 1305-1317.doi: 10.19562/j.chinasae.qcgc.2022.09.002
Special Issue: 智能网联汽车技术专题-规划&控制2022年
Previous Articles Next Articles
Shunchang Duan1,2,Xianxu Bai1,2(),Qin Shi1,2,Weihan Li1,2,Guannan He1,2
Received:
2022-03-27
Revised:
2022-04-29
Online:
2022-09-25
Published:
2022-09-21
Contact:
Xianxu Bai
E-mail:bai@hfut.edu.cn
Shunchang Duan,Xianxu Bai,Qin Shi,Weihan Li,Guannan He. The Design of the Safety of the Intended Functionality of the Control Strategies for Vehicle Automatic Emergency Braking System[J].Automotive Engineering, 2022, 44(9): 1305-1317.
"
编号 | 触发事件 | 潜在 危害 | 危害分类 | 安全目标 |
---|---|---|---|---|
HZ-01 | 车辆在湿滑路面行驶,车辆减速避撞 | 与障碍物相撞 | HV2 | 避免湿滑路面上系统介入不及时 |
HZ-02 | 车辆在条件极好的路面行驶,车辆减速避撞 | 车辆被后车追尾 | HV4 | 避免良好路面上系统介入过早 |
HZ-03 | 自车行驶速度过快,车辆减速避撞 | 与障碍物相撞 | HV2 | 避免自车高速行驶下系统介入不及时 |
HZ-04 | 前车急减速,自车减速避撞 | 与障碍物相撞 | HV2 | 避免前车急减速下系统介入不及时 |
HZ-05 | 前车缓慢减速,自车减速避撞 | 车辆被后车追尾 | HV4 | 避免前车缓慢减速下系统介入过早 |
HZ-06 | 前车低速匀速行驶,自车减速避撞 | 与障碍物相撞 | HV2 | 避免前车低速行驶下系统介入不及时 |
HZ-07 | 前车低速匀速行驶,自车减速避撞 | 车辆被后车追尾 | HV4 | 避免前车低速行驶下系统介入过早 |
1 | 金辉, 李昊天. 基于驾驶风格的前撞预警系统报警策略[J]. 汽车工程, 2021, 43(3):405-413. |
JIN H, LI H T. Alarm strategy for frontal crash warning system based on driving style[J]. Automotive Engineering, 2021, 43(3):405-413. | |
2 | World Health Organization. Road traffic injuries[R]. Geneva: WHO, 2021. |
3 | National Transpotation Safety Board. Collision between vehicle controlled by developmental automated driving system and pedestrian, Tempe, Arizona, March 18[R]. Washington: NTSB, 2019. |
4 | National Transpotation Safety Board. Collision between a car operating with automated vehicle control systems and a tractor-semitrailer truck near Williston, Florida May 7[R]. Washington: NTSB, 2017. |
5 | NASSI B, MIRSKY Y, NASSI D, et al. Phantom of the ADAS: securing advanced driver-assistance systems from split-second phantom attacks[M]. Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA: Association for Computing Machinery, 2020: 293-308. |
6 | 全国汽车标准化技术委员会,等. 预期功能安全国际标准 ISO 21448 及中国实践白皮书[R]. 北京:全国标准技术委员会, 2020. |
National Technical Committee of Auto Standerdization, et al. Safety of the intended functionality international standard ISO 21448 and Chinese practice white paper[R]. Beijing: National Technical Committee of Auto Standardization, 2020. | |
7 | International Organization for Organization. ISO/PAS 21448 road vehicles: safety of the intended functionality [S]. Geneva: ISO, 2019. |
8 | SABERU A K, HEGGR J, FRUEHLING T, et al. Beyond SOTIF: black swans and formal methods[C]. 2020 IEEE International Systems Conference (SysCon). IEEE, 2020. |
9 | BECKER C, BREWER J C, YOUNT L. Safety of the intended functionality of lane-centering and lane-changing maneuvers of a generic level 3 highway chauffeur system[J]. 2020(DOT HS 812 879). |
10 | POST K, DAVEY C K. Integrating SOTIF and agile systems engineering: 2019-01-0141[R]. Warrendale, PA: SAE International,2019. |
11 | ABDULAZIM A, ELBAHAEY M, MOHAMED A. Putting safety of intended functionality SOTIF into practice[C]. SAE WCX Digital Summit, 2021. |
12 | 郭菲菲, 赵永飞, 付金勇, 等. 全自动泊车辅助系统的预期功能安全开发研究[C]. 2020中国汽车工程学会年会论文集, 2020: 545-551. |
GUO F F, ZHAO Y F, FU J Y, et al. Research on SOTIF of shiftless auto parking assist system[C]. 2020 Proceedings of the Annual Meeting of China Society of Automotive Engineering, 2020: 545-551. | |
13 | 李波, 尚世亮, 郭梦鸽, 等. 自动驾驶预期功能安全(SOTIF)接受准则的建立[J]. 汽车技术, 2020(12). |
LI B, SHANG S L, GUO M G, et al. Establishment of SOTIF acceptance criteria for autonomous driving[J]. Automobile Technology, 2020(12). | |
14 | 孙骏, 陈浩, 白先旭, 等. 一种自动驾驶车辆整车级别的性能评价方法: 202110820459[P]. 2021-10-01. |
SUN J, CHEN H, BAI X X, et al. A performance evaluation method for autonomous driving vehicle at vehicle level: 202110820459[P]. 2021-10-01. | |
15 | 白先旭, 左瑜, 李维汉. 自动驾驶汽车控制系统的预期功能安全性能的量化评价方法: 202110818881[P]. 2021-10-01. |
BAI X X, ZUO Y, LI W H. Quantitative evaluation method for the safety of the intended functionality performance of autonomous vehicle control system: 202110818881[P]. 2021-10-01. | |
16 | YUNHYOUNG H, SEIBUM B C. Adaptive collision avoidance using road friction information[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(1):348-361. |
17 | KHYYAT M, ARRIGONI S, CHELI F. Development and simulation-based testing of a 5G-Connected intersection AEB system[J]. Vehicle System Dynamics, 2021: 1-20. |
18 | 杨为, 赵胡屹, 舒红. 自动紧急制动系统行人避撞策略及仿真验证[J]. 重庆大学学报, 2019(2). |
YANG W, ZHAO H Y, SHU H. Simulation and verification of the control strategies for AEB pedestrian collision avoidance system[J]. Journal of Chongqing University, 2019(2). | |
19 | 郭祥靖, 孙攀, 邓杰, 等. 基于BP神经网络算法预测的重型半挂汽车列车AEB控制策略研究[J]. 汽车工程, 2021, 43(9): 1350-1359. |
GUO X J, SUN P, DENG J, et al. Research on AEB control strategy of a heavy tractor-semitrailer combination based on BP neural network algorithm prediction[J]. Automotive Engineering, 2021, 43(9): 1350-1359. | |
20 | KIM G, MUN H, KIM B. Performance of AEB system on a slope using an extended Kalman filter[J]. International Journal of Software Engineering and Knowledge Engineering, 2019,29(7). |
21 | 兰凤崇, 余蒙, 李诗成, 等. 考虑预碰撞时间的自动紧急制动系统分层控制策略研究[J]. 汽车工程, 2020, 42(2): 206-214. |
LAN F C, YU M, LI S C, et al. Research on hierarchical control strategies for automotive emergency braking system with consideration of time-to-collision[J]. Automotive Engineering, 2020, 42(2): 206-214. | |
22 | 全国汽车标准化技术委员会. 乘用车自动紧急制动系统(AEBS)性能要求及试验方法:GB/T 39901—2021[S]. 北京: 中国标准出版社, 2021. |
National Technical Committee of Auto Standardization. Performance requirements and test methods for advanced emergency braking system (AEBS) of passenger cars:GB/T 39901—2021[S]. Beijing: Standards Press of China, 2021. | |
23 | 刘贵如, 周鸣争, 王陆林, 等.城市工况下最小安全车距控制模型和避撞算法[J]. 汽车工程, 2016, 38(10): 1200-1205,1176. |
LIU G R, ZHOU M Z, WANG L L, et al. Minimum safe vehicle distance control model and collision avoidance algorithm under urban conditions[J]. Automotive Engineering, 2016, 38(10): 1200-1205,1176. | |
24 | 蒋春文. 基于路面附着系数的AEB控制系统研究[D]. 长春:吉林大学, 2020. |
JIANG C W. AEB control system based on road adhesion coefficient[D]. Changchun: Jilin University, 2020. | |
25 | 李霖, 朱西产, 董小飞, 等.自主紧急制动系统避撞策略的研究[J].汽车工程,2015, 37(2):168-174. |
LI L, ZHU X C, DONG X F, et al. A research on the collision avoidance strategy for autonomous emergency braking system[J]. Automotive Engineering, 2015, 37(2):168-174. | |
26 | 李鹏辉. 中国典型驾驶场景库建设项目技术研究报告[R]. 重庆: 中国汽研, 2019. |
LI P H. Technical research report of construction project of typical driving scene database in China[R]. Chongqing: China Automotive Engineering Research Institute Co.,Ltd., 2019. |
[1] | Yanli Ma, Qin Qin, Fangqi Dong, Yining Lou. Takeover Risk Assessment Model Based on Risk Field Theory Under Different Cognitive Secondary Tasks [J]. Automotive Engineering, 2024, 46(1): 9-17. |
[2] | Xianxu Bai,Yu Zuo,Weihan Li,Qin Shi,Chuzhao Li,Shulian Zhao,Jiong Chen. Quantitative Evaluation of SOTIF for Control Module of AEBS [J]. Automotive Engineering, 2023, 45(9): 1655-1665. |
[3] | Zheng Zuo,Yunpeng Wang,Bin Ma,Bosong Zou,Yaoguang Cao,Shichun Yang. Quantitative Evaluation and Analysis of On-board Network Components Risk Rate Based on AFC-TARA [J]. Automotive Engineering, 2023, 45(9): 1553-1562. |
[4] | Da Li,Junjun Deng,Zhaosheng Zhang,Peng Liu,Zhenpo Wang. Review on Power Battery Safety Warning Strategy in Electric Vehicles [J]. Automotive Engineering, 2023, 45(8): 1392-1407. |
[5] | Xiang Gao,Long Chen,Xinye Wang,Xiaoxia Xiong,Yicheng Li,Yuexia Chen. Intelligent Vehicle Driving Risk Assessment Method Based on Trajectory Prediction [J]. Automotive Engineering, 2023, 45(4): 588-597. |
[6] | Yong Han,Xiaobin Yuan,Ming Lu,Xiaotian Tan. Research on AEB Longitudinal and Transverse Triggering Strategy in Typical Scenarios of Vehicle to Electric Two-Wheelers Collisions [J]. Automotive Engineering, 2023, 45(3): 501-509. |
[7] | Jichao Hong,Fengwei Liang,Haixu Yang,Kerui Li. Research on Intelligent Safety Management and Control Methods for Big-data-driven Battery Systems [J]. Automotive Engineering, 2023, 45(10): 1845-1861. |
[8] | Chao Zhao,Dexu Bu,Lipeng Cao,Keqiang Li,Yugong Luo. Safety Control Strategy for Adaptive Cruise Control System in Heavy Rainfall Scenes [J]. Automotive Engineering, 2022, 44(8): 1117-1125. |
[9] | Dongkui Tan,Gangjun Hu,Bo Zhu,Lai Jin,Jie Zhang. Intelligent Vehicle Autonomous Emergency Braking System Considering Safety of the Intended Functionality [J]. Automotive Engineering, 2022, 44(6): 799-808. |
[10] | Yaxiong Wang,Keke Wang,Shunbin Zhong,Hongwen He,Xuechao Wang. Research Progress on Durability Enhancement-oriented Electric Control Technology of Automotive Fuel Cell System [J]. Automotive Engineering, 2022, 44(4): 545-559. |
[11] | Hao Chen,Hong Wang,Weihan Li,Xianxu Bai,Jiong Chen,Chuzhao Li,Qin Shi,Jun Sun. Risk Assessment of Safety of the Intended Functionality Scenes Based on Driving Safety Field Theory [J]. Automotive Engineering, 2022, 44(11): 1636-1646. |
[12] | Wen Sun,Chenyang Li,Junnian Wang,Haozhe Qian,Wentong Zhang. Research on Ride Comfort of an Off-road Vehicle with Compound Suspension [J]. Automotive Engineering, 2022, 44(1): 105-114. |
[13] | Naixuan Zhu,Zhenhai Gao,Hongyu Hu,Lü Ying,Weiguang Zhao. Research on Personalized Lane Change Triggering Based on Traffic Risk Assessment [J]. Automotive Engineering, 2021, 43(9): 1314-1321. |
[14] | Yingzhao Ma,Tianyi Yan,Yanle Zhao. Research on Integrated Control Strategy of a New⁃Type Electronically Controlled Air Suspension System [J]. Automotive Engineering, 2021, 43(9): 1394-1401. |
[15] | Zhizhao Peng,Yintao Wei,Xiaowei Fu,Xiejun Yao. Research and Performance Test of Magnetorheological Semi⁃Active Suspension System Based on a Real Vehicle [J]. Automotive Engineering, 2021, 43(2): 269-277. |
|