Automotive Engineering ›› 2024, Vol. 46 ›› Issue (5): 874-881.doi: 10.19562/j.chinasae.qcgc.2024.05.013
Yong Han1,2(),Mingwang Li1,Yuecong Zhang1,Guochao Xu1,Di Pan1,2
Received:
2023-09-24
Revised:
2023-10-21
Online:
2024-05-25
Published:
2024-05-17
Contact:
Yong Han
E-mail:Yonghanxmut@gmail.com
Yong Han,Mingwang Li,Yuecong Zhang,Guochao Xu,Di Pan. Study of Driver Posture on Injury Risk Under MPDB Conditions[J].Automotive Engineering, 2024, 46(5): 874-881.
"
响应类型 | 损伤评价指标 | 姿态HR | 姿态HN | 姿态HF | 姿态BF | 阈值 |
---|---|---|---|---|---|---|
运动学响应 | HIC15 | 316 | 310 | 274 | 288 | 高性能限值500 |
低性能限值700[ | ||||||
头部3 ms合成加速度/g | 56 | 59 | 95 | 102 | 高性能限值72g | |
低性能限值80g[ | ||||||
胸部3 ms合成加速度/g | 42 | 46 | 36 | 35 | 60g[ | |
BrIC | 0.6 | 0.5 | 0.54 | 0.93 | 1,45%概率AIS 4级脑损伤[ | |
胸部最大压缩量/mm | 28 | 17 | 21 | 33 | 高性能限值35 mm | |
低性能限值60 mm[ | ||||||
损伤指标 | Von Mises应力/kPa | 9.8 | 9.5 | 8.8 | 16.5 | 6~11 kPa,脑挫伤 |
大于15 kPa,轻微脑震荡 | ||||||
大于38 kPa,重度脑损伤[ | ||||||
颅内压力/kPa | 104 | 165 | 474 | 744 | 大于173 kPa,轻度脑损伤 | |
大于235 kPa,重度脑损伤[ | ||||||
剪切应力/kPa | 5.6 | 5.4 | 6.5 | 8.2 | 6 kPa,25%概率轻度脑损伤 | |
7.8 kPa,50%概率轻度脑损伤 | ||||||
10 kPa,80%概率轻度脑损伤 | ||||||
25 kPa,100%概率中度脑损伤[ | ||||||
最大主应变 | 0.73 | 0.72 | 0.71 | 0.75 | 0.45,50%概率轻微脑震荡[ | |
肺部压力/kPa | 620 | 578 | 493 | 481 | 大于16 kPa,严重损伤概率较大[ | |
心脏压力/kPa | 906 | 903 | 774 | 634 | 大于170 kPa,严重损伤概率较大[ | |
肋骨塑性应变/% | 11 | 13 | 14 | 11 | 大于1.4%,肋骨骨折风险较大[ |
1 | World Health Organization. Global status report on road safety 2018:supporting a decade of action[R]. Swtizerland: World Health Organization, 2018. |
2 | 国家统计局. 2022中国统计年鉴[M]. 北京: 中国统计出版社, 2022. |
National Bureau of Statistics. 2022 China statistical yearbook [M]. Beijing: China Statistics Press, 2022. | |
3 | BOSE D, CRANDALL J R, UNTAROIU C D, et al. Influence of pre-collision occupant parameters on injury outcome in a frontal collision[J]. Accident Analysis & Prevention, 2010, 42(4): 1398-1407. |
4 | ADAM T, UNTAROIU C D. Identification of occupant posture using a Bayesian classification methodology to reduce the risk of injury in a collision[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 1078-1094. |
5 | BOYLE K, FANTA A, REED M P, et al. Restraint systems considering occupant diversity and pre-crash posture[J]. Traffic Injury Prevention, 2020, 21(sup1): S31-S36. |
6 | YANG S, ZHOU Q, NIE B, et al. A human body model based method for injury risk prediction considering occupant stature and posture[J]. International Journal of Crashworthiness, 2023, 28(4): 498-510. |
7 | 黄政平. 汽车正面偏置碰撞安全性研究[D]. 长沙: 湖南大学, 2021. |
HUANG Zhengping. Research on the safety of automobile frontal offset collision [D]. Changsha: Hunan University, 2021. | |
8 | 李海岩, 王彦鑫,贺丽娟, 等. 不同坐姿的6岁儿童乘员在MPDB碰撞测试中头颈部损伤评价[J]. 汽车工程, 2021, 43(12): 1793-1799. |
LI Haiyan, WANG Yanxin, HE Lijuan, et al. Evaluation of head and neck injuries in MPDB crash tests of 6-year-old child occupants with different sitting postures[J]. Automotive Engineering, 2021, 43(12): 1793-1799. | |
9 | 李海岩, 苏航杰, 祝贺, 等. 中国体征3岁儿童乘员损伤仿MPDB正面碰撞测试仿真中的应用[J]. 汽车工程, 2022, 44(12): 1944-1953. |
LI Haiyan, SU Hangjie, ZHU He, et al. Application of occupant injury mimicking MPDB frontal crash test simulation for 3-year-old children in China[J]. Automotive Engineering, 2022, 44(12): 1944-1953. | |
10 | 刘明, 商博. 整车MPDB试验中THOR假人损伤的研究[J]. 汽车工程, 2021, 43(18): 1223-1227. |
LIU Ming, SHANG Bo. Research on THOR dummy damage in whole vehicle MPDB test[J]. Automotive Engineering, 2021, 43(18): 1223-1227 | |
11 | Mass reduction for light-duty vehicles for model years 2017-2025 final report [R].America:NHTSA, 2012-08. |
12 | C-NCAP 管理中心 . C-NCAP 管理规则(2021版)[S]. 天津:中国汽车技术研究中心,2020. |
C-NCAP Management Center. C-NCAP management regulation(2021 version)[S]. Tianjin:China Automotive Technology and Research Center Co. ,2020. | |
13 | WANG F,HAN Y. Prediction of brain deformations and risk of traumatic brain injury due to closed head imoact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model[J]. Biomechanics and Modeling in Mechanobiology, 2018, 4(17): 1165-1185. |
14 | HARDY W N, FOSTER C D. Investigation of head injury mechanisms using neutral density technology and highspeed biplanar X-ray[C]. Stapp Car Crash Conference, 2001(45): 337-342. |
15 | IWAMOTO M, KISANUKI Y. Development of a finite element model of the total human model for safety (THUMS) and application to injury reconstruction[C].Proceedings of the 2002 International Research Council on Biomechanics of lnjury, Munich Germany. Germany, 2022: 31-42. |
16 | JANOVICZ D. Final report of new car assessment program frontal impact testing of 2011 Honda Accord LX 4-Dr Sedan: NCAP-MGA-2011-027[R]. NHTSA, 2010. 2010-10-28. |
17 | HU J, FLANNAGAN C A, BAO S, et al. Integration of active and passive safety technologies - a method to study and estimate field capability[C].59th Stapp Car Crash Conference, 2015: 2015-22-0010. |
18 | BAUMGARTNER D,WILLINGER R,SHEWCHENKO N,et al. Tolerance limits for mild traumatic brain injury derived from numerical head impact replication[C]. Proc of International IRCO- BI Conference on the Biomechanics of Impacts. Isle of Man,UK: IRCOBI,2001:353-355. |
19 | 水野幸治, 韩勇. 汽车碰撞安全[M]. 北京: 人民交通出版社,2016. |
MIZUNO Y, HAN Y. Automotive crash safety [M]. Beijing: People's Transportation Press,2016. | |
20 | TAKHOUNTS E G, CRAIG M J, MOORHOUSE K, et al. Development of brain injury criteria (BrIC)[C].57th Stapp Car Crash Conference, 2013: 2013-22-0010. |
21 | ZHANG L, YANG K H, KING A I. A proposed injury threshold for mild traumatic brain injury[J]. Journal of Biomechanical Engineering, 2004, 126(2): 226-236. |
22 | WARD C. The development of a detailed finite element brain model[C]. Stapp Car Crash Conference, 1975. |
23 | 韩勇, 何勇. 电动两轮车事故中不同头盔对地面碰撞防护性能研究[J]. 振动与冲击, 2022, 18(41): 55-66. |
HAN Yong, HE Yong. Research on the performance of different helmets on ground impact protection in electric two-wheeled vehicle accidents[J]. Vibration and Impact, 2022, 18(41): 55-66. | |
24 | JOEL D S, JOSEPH M C. Defining regional variation in the material properties of human rib cortical bone and its effect on fracture prediction[C]. Stapp Car Crash Conference, 2003: 243-265. |
25 | RUAN J, EL-JAWAHRI R. Prediction and analysis of human thoracic impact responses and injuries in cadaver impacts using a full human body finite element model[C]. Stapp Car Crash Conference, 2003: 299-321. |
26 | Federal motor vehicle safety standard208[S]. America:NHTSA,2006. |
27 | 李海岩, 李鑫杰, 崔世海, 等. 乘员与安全气囊初始距离对轻度脑损伤的影响[J]. 汽车工程, 2020, 42(7):882-886. |
LI Haiyan, LI Xinjie, CUI Shihai, et al. Effect of initial distance between occupant and airbag on mild brain injury[J]. Automotive Engineering, 2020, 42(7):882-886. |
[1] | Hongyu Hu, Yechen Li, Zhengguang Zhang, You Qu, Lei He, Zhenhai Gao. Driver Behavior Recognition Based on Multi-scale Skeleton Graph and Local Visual Context Method [J]. Automotive Engineering, 2024, 46(1): 1-8. |
[2] | Wei Ran,Hui Chen,Jiaxin Yang,Nishimura Yosuke,Chaopeng Guo,Youyu Yin. Design Method of Motion Planning Reward Function Based on Utility Theory [J]. Automotive Engineering, 2023, 45(8): 1373-1382. |
[3] | Lisheng Jin,Bingdong Ji,Baicang Guo. Driver’s Attention Prediction Based on Multi-Level Temporal-Spatial Fusion Network [J]. Automotive Engineering, 2023, 45(5): 759-767. |
[4] | Lijun Qian,Chen Chen,Jian Chen. Centralized Trajectory Planning in an Unsignalized Intersection Environment Considering Driver Error [J]. Automotive Engineering, 2023, 45(5): 768-776. |
[5] | Xiang Gao,Long Chen,Xinye Wang,Xiaoxia Xiong,Yicheng Li,Yuexia Chen. Intelligent Vehicle Driving Risk Assessment Method Based on Trajectory Prediction [J]. Automotive Engineering, 2023, 45(4): 588-597. |
[6] | Gege Cui,Lü Chao,Jinghang Li,Zheyu Zhang,Guangming Xiong,Jianwei Gong. Data-Driven Personalized Scenario Risk Map Construction for Intelligent Vehicles [J]. Automotive Engineering, 2023, 45(2): 231-242. |
[7] | Liang Yan,Xiaodong Wu,Chuan Hu. Human-Vehicle Shared Steering Control System for Dense Obstacle Avoidance [J]. Automotive Engineering, 2023, 45(12): 2222-2233. |
[8] | Xin Guan,Li Li,Chunguang Duan,Jun Zhan. A Characteristics-Based Dynamic Model of the Full-Floating Cab for the Commercial Vehicle [J]. Automotive Engineering, 2023, 45(12): 2272-2279. |
[9] | Manjiang Hu,Lingkun Bu,Hongmao Qin,Yan Zhou,Yougang Bian,Ning Sun,Xunjia Zheng. Modeling and Cooperative Control of Mixed Vehicle Platoon Under Multi-time Delay [J]. Automotive Engineering, 2022, 44(9): 1359-1371. |
[10] | Zibin Guo,Hui Chen,Taokai Xia,Wei Ran,Yosuke Nishimura,Jianzhen Wang. Study on Quantification of Driver’s Subjective Risk Perception in Curve Driving Condition [J]. Automotive Engineering, 2022, 44(9): 1447-1455. |
[11] | Yingshi Guo,Yahui Hu,Rui Fu,Chang Wang. Research on Driver Lateral Control Model Under Crosswind Conditions Based on Cognitive-Control Framework [J]. Automotive Engineering, 2022, 44(8): 1251-1261. |
[12] | Fang Tong,Xiong Li,Fengchong Lan,Jiqing Chen. Simulation Analysis on Blunt Aortic Injury of Vehicle Occupants [J]. Automotive Engineering, 2022, 44(6): 878-885. |
[13] | Fan Li,Mingjie Ye,Wei Huang,Jin Nie,Minggang Tan. Effects of Neck Muscle’s Active Force on Head Injury in Pedestrian Collision Accidents [J]. Automotive Engineering, 2022, 44(3): 385-391. |
[14] | Zhiguo Zhao,Yuan Li,Haorui Hu,Peng Wang,Xiaorong Chen. Detection of Driver’s Abnormal Behavior Under Emergent Collision Avoidance Conditions [J]. Automotive Engineering, 2022, 44(3): 412-425. |
[15] | Bin Zhang,Junyi Fu,Jinxiang Xia. A Metric Space Optimized Method for Driver Distraction Recognition Model Training [J]. Automotive Engineering, 2022, 44(2): 225-232. |
|