Automotive Engineering ›› 2022, Vol. 44 ›› Issue (12): 1825-1833.doi: 10.19562/j.chinasae.qcgc.2022.12.004
Special Issue: 智能网联汽车技术专题-规划&控制2022年
Previous Articles Next Articles
Yuande Jiang1,Bing Zhu2(),Xiangmo Zhao1,Jian Zhao2,Bingbing Zheng3
Received:
2022-06-16
Revised:
2022-07-23
Online:
2022-12-25
Published:
2022-12-22
Contact:
Bing Zhu
E-mail:zhubing@jlu.edu.cn
Yuande Jiang,Bing Zhu,Xiangmo Zhao,Jian Zhao,Bingbing Zheng. Modeling of Traffic Vehicle Interaction for Autonomous Vehicle Testing[J].Automotive Engineering, 2022, 44(12): 1825-1833.
1 | 吕伟,黄广琛,汪京辉.基于元胞自动机的高速公路瓶颈交通演化仿真[J].交通运输系统工程与信息,2022,6(6): 1-11. |
LÜ Wei, HUANG Guangchen, WANG Jinghui. Simulation of highway traffic bottleneck via cellular automata [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 6(6): 1-11. | |
2 | 邓伟文,李江坤,任秉韬,等.面向自动驾驶的仿真场景自动生成方法综述[J].中国公路学报,2022,35(1):316. |
DENG Weiwen, LI Jiangkun, REN Bingtao, et al. A survey on automatic simulation scenario generation methods for autonomous driving[J]. China Journal of Highway Transport, 2022,35(1):316. | |
3 | 张培兴,邱彬,朱冰,等.自动驾驶系统并行加速测试方法研究[J].汽车工程,2022,44(2):208-214. |
ZHANG Peixing, QIU Bin, ZHU Bing, et al. Study on parallel accelerated testing method for automated driving system[J]. Automotive Engineering, 2022, 44(2): 208-214. | |
4 | 徐向阳,胡文浩,董红磊,等.自动驾驶汽车测试场景构建关键技术综述[J].汽车工程,2021,43(4):610-619. |
XU Xiangyang, HU Wenhao, DONG Honglei, et al. Review of key technologies for autonomous vehicle test scenario construction[J]. Automotive Engineering, 2021, 43(4): 610-619. | |
5 | MARKKULA G, MADIGAN R, NATHANAEL D, et al. Defining interactions: a conceptual framework for understanding interactive behaviour in human and automated road traffic[J]. Theoretical Issues in Ergonomics Science, 2020, 21(6): 728-752. |
6 | SCHEIBLER K, EGGERS A, TEIGE T, et al. Solving constraint systems from traffic scenarios for the validation of autonomous driving[C]. CEUR-WS. Proc. of the 4th SC-square Workshop. Bern:CEUR-WS,2019: 2-12. |
7 | BAGSCHIK G, MENZEL T, MAURER M. Ontology based scene creation for the development of automated vehicles[C]. 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018: 1813-1820. |
8 | ZHANG Y, HANG P, HUANG C, et al. Human‐like interactive behavior generation for autonomous vehicles: a bayesian game‐theoretic approach with turing test[J]. Advanced Intelligent Systems, 2022, 4(5): 2100211. |
9 | CHAO Q, JIN X, HUANG H W, et al. Force-based heterogeneous traffic simulation for autonomous vehicle testing[C]. 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 8298-8304. |
10 | FENG S, YAN X, SUN H, et al. Intelligent driving intelligence test for autonomous vehicles with naturalistic and adversarial environment[J]. Nature Communications, 2021, 12(1): 1-14. |
11 | BHATTACHARYYA A, REINO D O, FRITZ M, et al. Euro-PVI: pedestrian vehicle interactions in dense urban centers[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 6408-6417. |
12 | CUI H, RADOSAVLJEVIC V, CHOU F C, et al. Multimodal trajectory predictions for autonomous driving using deep convolutional networks[C]. 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 2090-2096. |
13 | LIU L, FENG S, FENG Y, et al. Learning-based stochastic driving model for autonomous vehicle testing[J]. Transportation Research Record, 2022, 2676(1): 54-64. |
14 | GAO J, SUN C, ZHAO H, et al. Vectornet: encoding HD maps and agent dynamics from vectorized representation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11525-11533. |
15 | GILLES T, SABATINI S, TSISHKOU D, et al. Home: heatmap output for future motion estimation[C]. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE, 2021: 500-507. |
16 | MOHAMED A, QIAN K, ELHOSEINY M, et al. Social-stgcnn: a social spatio-temporal graph convolutional neural network for human trajectory prediction[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 14424-14432. |
17 | RASHID T, SAMVELYAN M, SCHROEDER C, et al. Qmix: monotonic value function factorisation for deep multi-agent reinforcement learning[C]. International Conference on Machine Learning. PMLR, 2018: 4295-4304. |
18 | KESTING A, TREIBER M, HELBING D. Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1928): 4585-4605. |
19 | 王俊. 考虑驾驶特性的微观交通仿真[D]. 北京:清华大学, 2011. |
WANG Jun. Microscopic traffic simulation considering driving characteristics [D]. Beijing: Tsinghua University, 2011. | |
20 | LAI G, CHANG W C, YANG Y, et al. Modeling long-and short-term temporal patterns with deep neural networks[C]. The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 2018: 95-104. |
21 | MIYATO T, DAI A M, GOODFELLOW I. Adversarial training methods for semi-supervised text classification[J]. arXiv Preprint arXiv:, 2016. |
22 | FOURNIER N, GUILLIN A. On the rate of convergence in Wasserstein distance of the empirical measure[J]. Probability Theory and Related Fields, 2015, 162(3): 707-738. |
[1] | Xinke Fu,Yingfeng Cai,Long Chen,Hai Wang,Qingchao Liu. Decision-Making for Autonomous Driving in Uncertain Environment [J]. Automotive Engineering, 2024, 46(2): 211-221. |
[2] | Yanxin Wang,Haiyan Li,Shihai Cui,Lijuan He,Lü Wenle. Research on Prediction Model and Assessment Parameters of Head Injury for Child Occupants Based on BP Neural Network [J]. Automotive Engineering, 2024, 46(2): 329-336. |
[3] | Ze Gao, Zunkang Chu, Jiasheng Shi, Fu Lin, Weixiong Rao, Haiyan Yu. Research on Fast Prediction Method of Stress Field of Automotive Parts Based on Graph Network [J]. Automotive Engineering, 2024, 46(1): 170-178. |
[4] | Siyu Wu,Wenhao Yu,Xingyu Xing,Yuxin Zhang,Chuzhao Li,Xueke Li,Xinyu Gu,Yunwei Li,Xiaohan Ma,Wei Lu,Zheng Wang,Zhenmao Hao,Hong Wang,Jun Li. Methodology of Critical Scenarios-Based Dual-Loop Testing and Verification for Safety of the Intended Functionality [J]. Automotive Engineering, 2023, 45(9): 1583-1607. |
[5] | Weiguo Liu,Zhiyu Xiang,Rui Liu,Guodong Li,Zixu Wang. Research on End-to-End Vehicle Motion Planning Method Based on Deep Learning [J]. Automotive Engineering, 2023, 45(8): 1343-1352. |
[6] | Lin Hu,Gen Li,Fang Wang,Miao Lin,Ning Wu. Research on Test Scenarios of Passenger Cars and Two-Wheelers at Intersections Based on CIDAS Accident Data [J]. Automotive Engineering, 2023, 45(8): 1417-1427. |
[7] | Xinzheng Wu,Xingyu Xing,Lihao Liu,Yong Shen,Junyi Chen. Testing and Analysis of the Robustness of Decision-Making and Planning Systems Based on Fault Injection [J]. Automotive Engineering, 2023, 45(8): 1428-1437. |
[8] | Cheng Lin, Bowen Wang, Lü Peiyuan, Xinle Gong, Xiao Yu. Research on Motion Planning and Cooperative Control for Autonomous Vehicles with Lane Change Gaming Maneuvers Under the Curved Road [J]. Automotive Engineering, 2023, 45(7): 1099-1111. |
[9] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
[10] | Yanyan Chen,Hai Wang,Yingfeng Cai,Long Chen,Yicheng Li. Efficient Automatic Driving Instance Segmentation Method Based on Detection [J]. Automotive Engineering, 2023, 45(4): 541-550. |
[11] | Fengchong Lan,Jikai Chen,Jiqing Chen,Xinping Jiang,Zihan Li,Wei Pan. Research on Lithium Battery Remaining Useful Life Prediction Method Driven by Real Vehicle Data [J]. Automotive Engineering, 2023, 45(2): 175-182. |
[12] | Lü Ying,Xu Qi,Qiuzheng Liu,Xinyu Wang,Guoying Chen. Path Tracking Control Method with Steering Lag for Autonomous Vehicles [J]. Automotive Engineering, 2023, 45(12): 2234-2241. |
[13] | Linhui Li,Xinliang Zhang,Yifan Fu,Jing Lian,Jiaxu Ma. Research on Visible Light and Infrared Post-Fusion Detection Based on TC-YOLOv7 Algorithm [J]. Automotive Engineering, 2023, 45(12): 2280-2290. |
[14] | Zhengfa Liu,Ya Wu,Peigen Liu,Rongqi Gu,Guang Chen. Cross-Domain Object Detection for Intelligent Driving Based on Joint Distribution Matching of Features and Labels [J]. Automotive Engineering, 2023, 45(11): 2082-2091. |
[15] | Long Chen,Chen Yang,Yingfeng Cai,Hai Wang,Yicheng Li. Pedestrian Crossing Intention Prediction Method Based on Multimodal Feature Fusion [J]. Automotive Engineering, 2023, 45(10): 1779-1790. |