Automotive Engineering ›› 2022, Vol. 44 ›› Issue (4): 545-559.doi: 10.19562/j.chinasae.qcgc.2022.04.010
Special Issue: 新能源汽车技术-动力电池&燃料电池2022年
Previous Articles Next Articles
Yaxiong Wang1,Keke Wang1,Shunbin Zhong1,Hongwen He2(),Xuechao Wang2
Received:
2021-11-14
Revised:
2021-12-13
Online:
2022-04-25
Published:
2022-04-22
Contact:
Hongwen He
E-mail:hwhebit@bit.edu.cn
Yaxiong Wang,Keke Wang,Shunbin Zhong,Hongwen He,Xuechao Wang. Research Progress on Durability Enhancement-oriented Electric Control Technology of Automotive Fuel Cell System[J].Automotive Engineering, 2022, 44(4): 545-559.
"
氢气循环方案 | 技术实现 | 技术特点 | 文献 |
---|---|---|---|
单氢气循环泵循环方案 | 利用氢气循环泵将未反应的氢气从阳极出口处直接泵回入口处,与入口处氢气汇合后进入燃料电池电堆 | 响应速度快、适应工况范围广、可根据燃料电池运行状况进行主动调节,但面临成本高、体积大、寄生功率高、振动及噪声大等问题 | [ |
单级引射器 循环方案 | 利用文丘里工作原理,通过引射器将阳极出口处的氢气回吸至入口处 | 结构紧凑、运行可靠、无移动部件、无污染、无寄生功率,但在低功率下引射效果不佳,工作稳定性差 | [ |
氢气循环泵与引射器并联 循环方案 | 低功率工作区间时启动氢气循环泵出未完全反应的氢气,高功率区间工作时采用引射器装置 | 既避免了低功率下引射器工作效果不理想问题,又降低了氢气循环泵的寄生功耗,但结构复杂、成本高,面临氢气循环泵与引射器协同工作的关键问题 | [ |
双引射器并联循环方案 | 两个高低压引射器并联布置,在不同功率下实现氢气循环利用 | 可在全工况范围内工作,但系统复杂、控制难度高,且无法实现主动调节 | [ |
"
控制目标 | 控制方法 | 控制策略 | 特点 | 文献 |
---|---|---|---|---|
改善输出特性 | PID控制 | 控制氢气流量和空气流量的比例,从而控制输出电流 | 结构、设计简单,但难以兼顾氢压力的稳态和瞬态响应 | [ |
鲁棒控制 | 调节氢气和氧气的气流速率,从而控制输出电压 | 可以较好处理系统不确定性和扰动,运行条件变化也能稳定输出 | [ | |
前馈模糊PID控制 | 利用在线模糊逻辑优化回路实现PID参数的调整,采用前馈模糊PID控制器调节空气流量,降低空气供给系统寄生功率,改善燃料电池输出特性 | 兼具模糊控制器和PID控制器的优点,瞬态性能好、超调量小、响应速度快 | [ | |
鲁棒PID控制 | 结合鲁棒控制和PID控制的优点,调节氢气流量和空气流量,改善燃料电池的输出特性 | 兼具鲁棒控制和PID控制优点,可有效提高系统性能和效率 | [ | |
自抗扰 控制 | 控制空压机转速,调节质量流量和气体压力,改善输出特性 | 具有较好的瞬态和稳态性能,适用于强耦合系统 | [ | |
提升响应速度 | 模型预测控制 | 使用线性二次高斯算法和模型预测控制算法,在保证阴阳极压差的同时获得较好的系统响应性能 | 瞬态响应性能、抗干扰性能好 | [ |
复合前馈PID控制 | 输出电压误差较小时采用前馈控制策略保证空气压缩机的动态响应速度,误差较大时为满足负载要求采用PID控制策略实现空气压缩机转速控制 | 瞬态响应性能好,具有良好的准确性和快速性 | [ | |
提高燃 料电池 耐久性 | 非线性 控制 | 基于动态非线性模型,利用反馈线性化进行非线性控制,以减小阴阳极间压差,控制湿度和电压,提升燃料电池耐久性 | 利用反馈线性化消除系统的非线性,能够达到快速瞬态响应,但需要精确的系统模型 | [ |
H∞鲁棒 控制 | 控制供气歧管内压力,减小大扰动对阴阳极之间气体压差,保证系统的稳定运行并延长燃料电池电堆的使用寿命 | 抑制振荡和跟踪输出效果好,鲁棒性好 | [ | |
模型预测控制 | 提出基于观测器的模型预测控制策略,实现在不使用空气流量传感器的情况下对氧过量系数进行控制 | 易于调整,具有很高的鲁棒性 | [ | |
自适应滑模控制 | 结合自适应控制和滑模控制优点,调节空气供给系统氧过量系数提升控制器的抗干扰性、鲁棒性 | 在各种不确定性、干扰和噪声的影响下仍能快速收敛,鲁棒性好 | [ |
"
控制方式 | 控制方法 | 控制策略 | 特点 | 文献 |
---|---|---|---|---|
基于误 差的控 制策略 | PI控制 | 利用反馈PI控制策略将水泵电压作为一个连续的操作变量,从而达到最佳的温度控制效果 | 结构简单,控制水泵电压,减少风扇使用频率,降低寄生功率 | [ |
模糊控制 | 采用所提出的多输入多输出模糊控制器控制风扇转速使温度保持在合适的范围内,利用加湿器对入口处的氢气进行加湿以管理膜的含水量 | 能够实现强非线性、不确定性动态系统的实时控制,响应迅速,控制波动小 | [ | |
鲁棒PID控制 | 结合鲁棒控制和PID控制的优点,采用鲁棒PID控制策略控制冷却系统 | 控制结构简单,有利于硬件实现和系统小型化 | [ | |
基于模 型的控 制策略 | 鲁棒模型预测控制 | 基于线性时变模型,将相对增益阵列作为操作参数应用于控制系统,对输入和输出进行配对 | 克服了模型预测控制无法保证稳定性与鲁棒性和计算时间长的缺点 | [ |
1 | SONG K, WANG X D, LI F Q, et al. Pontryagin’s minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability[J]. Energy, 2020, 205: 118064. |
2 | SULAIMAN N, HANNAN M A, MOHAMED A, et al. Optimization of energy management system for fuel-cell hybrid electric vehicles: issues and recommendations[J]. Applied Energy, 2018, 228: 2061-2079. |
3 | JAHROMI M M, HEIDARY H. Durability and economics investigations on triple stack configuration and its power management strategy for fuel cell vehicles[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5740-5755. |
4 | İNCI M, BÜYÜK M, DEMIR M H, et al. A review and research on fuel cell electric vehicles: topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110648. |
5 | PENG R, PEI P C, LI Y H, et al. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions[J]. Progress in Energy and Combustion Science, 2020, 80: 100859. |
6 | 梁思哲, 曾蓉. 质子交换膜燃料电池耐久性评价方法[J]. 电源技术, 2019, 43(12): 2044-2047, 2052. |
LIANG S Z, ZENG R. Progress in accelerated durability test of proton exchange membrane fuel cells[J]. Chinese Journal of Power Sources, 2019, 43(12): 2044-2047, 2052. | |
7 | REISER C A, BREGOLI L, PATTERSON T W, et al. A reverse-current decay mechanism for fuel cells[J]. Electrochemical and Solid-State Letters, 2005,8(6): A273. |
8 | 罗马吉, 杨俊玮, 赵岩, 等. 不同衰退机理对PEMFC怠速工况性能衰退影响的模拟研究[J]. 太阳能学报, 2020: 1-7. |
LUO M J, YANG J W, ZHAO Y, et al. Simulation study on effect of different aging mechanism on PEMFC performance degradation under idling condition[J]. Acta Energiae Solaris Sinica, 2020: 1-7. | |
9 | HASHIMASA Y, NUMATA T. Comparison of test results on load cycle durability of polymer electrolyte fuel cell cathode catalysts[J]. International Journal of Hydrogen Energy, 2015, 40(35):11543-11549. |
10 | PEI Pucheng, CHEN Huicui. Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications: a review[J]. Applied Energy, 2014,125:60-75. |
11 | 秦孔建, 郝冬, 侯永平, 等. 车用 PEMFC 性能衰减影响因素的研究现状与展望[J]. 汽车工程学报, 2013, 3(4):242-250. |
QIN K J, HAO D, HOU Y P, et al. Review and prospect of influence factors of vehicular fuel cell performance degradation[J]. Chinese Journal of Automotive Engineering, 2013, 3(4): 242-250. | |
12 | ASHORYNEJAD H R, JAVAHERDEH K, Van den AKKER H E A. The effect of pulsating pressure on the performance of a PEM fuel cell with a wavy cathode surface[J]. International Journal of Hydrogen Energy, 2016, 41(32): 14239-14251. |
13 | YANG Y P, ZHANG X, GUO L J, et al. Degradation mitigation effects of pressure swing in proton exchange membrane fuel cells with dead-ended anode[J]. International Journal of Hydrogen Energy, 2017, 42(38): 24435-24447. |
14 | QIN Y Z, DU Q, FAN M Z, et al. Study on the operating pressure effect on the performance of a proton exchange membrane fuel cell power system[J]. Energy Conversion and Management, 2017, 142: 357-365. |
15 | CAI C, RAO Y, ZHANG Y, et al. Failure mechanism of PEM fuel cell under high back pressures operation[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13786-13793. |
16 | 纪合超, 陈涛, 刘士华, 等. 质子交换膜燃料电池温度监控系统的设计与开发[J]. 太阳能学报, 2020, 41(11): 375-380. |
JI H C, CHEN T, LIU S H, et al. Design and development of temperature monitoring system for proton exchange membrane fuel cell[J]. Acta Energiae Solaris Sinica, 2020, 41(11): 375-380. | |
17 | LIM K H, OH H, JANG S, et al. Effect of operating conditions on carbon corrosion in polymer electrolyte membrane fuel cells [J]. Journal of Power Sources, 2009,193(2): 575-579. |
18 | 常九健, 王晓林, 方建平, 等. 质子交换膜燃料电池阴阳极压力控制策略研究[J]. 汽车工程, 2021, 43(10): 1466-1471. |
CHANG J J, WANG X L, FANG J P, et al. Study on control strategy for anode and cathode pressures in proton exchange membrane fuel cell[J]. Automotive Engineering, 2021, 43(10): 1466-1471. | |
19 | 梁栋, 侯明, 窦美玲, 等. 质子交换膜燃料电池燃料饥饿现象[J]. 电源技术, 2010,34(8): 767-770. |
LIANG D, HOU M, DOU M L, et al. Study on behavior of proton exchange membrane fuel cell under fuel starvation conditons[J]. Chinese Journal of Power Sources, 2010, 34(8): 767-770. | |
20 | LEE G, CHOI H, TAK Y. In situ durability of various carbon supports against carbon corrosion during fuel starvation in a PEM fuel cell cathode[J]. Nanotechnology, 2019, 30(8): 85402. |
21 | KIM B, CHA D, KIM Y. The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions[J]. Applied Energy, 2015, 138: 143-149. |
22 | CHEN Q, ZHANG G B, ZHANG X Z, et al. Thermal management of polymer electrolyte membrane fuel cells: a review of cooling methods, material properties, and durability[J]. Applied Energy, 2021, 286: 116496. |
23 | 赵洪波, 刘杰, 马彪, 等. 水冷PEMFC热管理系统控制策略及仿真研究[J]. 化工学报, 2020, 71(5): 2139-2150. |
ZHAO H B, LIU J, MA B, et al. Control strategy and simulation research of water-cooled PEMFC thermal management system[J]. CIESC Journal, 2020, 71(5): 2139-2150. | |
24 | IJAODOLA O S, EL-HASSAN Z, OGUNGBEMI E, et al. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)[J]. Energy, 2019, 179: 246-267. |
25 | 邵芳雪. 燃料电池汽车用DC/DC系统及其控制研究[D]. 大连: 大连理工大学, 2019. |
SHAO F X. Research on the DC/DC system and control for fuel cell vehicles[D]. Dalian: Dalian University of Technology, 2019. | |
26 | SØNDERGAARD S, CLEEMANN L N, JENSEN J O, et al. Influence of oxygen on the cathode in HT-PEM fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(36): 20379-20388. |
27 | YANG D, PAN R, WANG Y J, et al. Modeling and control of PEMFC air supply system based on T-S fuzzy theory and predictive control[J]. Energy, 2019, 188: 116078. |
28 | DENG H W, LI Q, CUI Y L, et al. Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems[J]. International Journal of Hydrogen Energy, 2019, 44(35): 19357-19369. |
29 | WANG Y L, WANG Y F, ZHANG H K. Robust adaptive control of PEMFC air supply system based on radical basis function neural network[J]. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(6). |
30 | 南泽群, 许思传, 章道彪, 等. 车用PEMFC系统氢气供应系统发展现状及展望[J]. 电源技术, 2016, 40(8): 1726-1730. |
NAN Z Q, XU S C, ZHANG D B, et al. Development and prospect of hydrogen supply system in vehicle PEMFC[J]. Chinese Journal of Power Sources, 2016, 40(8): 1726-1730. | |
31 | WAN Y, XU S C, NI H S. Air compressors for fuel cell vehicles: an systematic review[J]. SAE International Journal of Alternative Powertrains, 2015, 4(1): 115-122. |
32 | DAUD W R W, ROSLI R E, MAJLAN E H, et al. PEM fuel cell system control: a review[J]. Renewable Energy, 2017, 113: 620-638. |
33 | KANDLIKAR S G, LU Z J. Thermal management issues in a PEMFC stack—a brief review of current status[J]. Applied Thermal Engineering, 2009,29(7): 1276-1280. |
34 | XU L F, FANG C, HU J, et al. Self-humidification of a polymer electrolyte membrane fuel cell System with cathodic exhaust gas recirculation[J]. Journal of Electrochemical Energy Conversion and Storage, 2018,15(2). |
35 | SHAO Y B, XU L F, ZHAO X W, et al. Comparison of self-humidification effect on polymer electrolyte membrane fuel cell with anodic and cathodic exhaust gas recirculation[J]. International Journal of Hydrogen Energy, 2020,45(4): 3108-3122. |
36 | CHEN J X, SIEGEL J B, STEFANOPOULOU A G, et al. Optimization of purge cycle for dead-ended anode fuel cell operation[J]. International Journal of Hydrogen Energy, 2013,38(12): 5092-5105. |
37 | 刘煜, 方明. 质子交换膜燃料电池氢气循环过程的稳态模拟与分析[J]. 东方电气评论, 2017,31(4): 21-27. |
LIU Y, FANG M. Steady state simulation and analysis of hydrogen recirculation process for proton exchange membrane fuel cell[J]. Dongfang Electric Review, 2017,31(4): 21-27. | |
38 | 肖杨杨, 叶立, 杨秋香, 等. PEMFC发动机系统氢气喷射器流场模拟及性能分析[J]. 能源工程, 2016(6): 27-33. |
XIAO Y Y, YE L, YANG Q X, et al. Hydrogen ejector flow field simulation and performance analysis on PEMFC engine system[J]. Energy Engineering, 2016(6): 27-33. | |
39 | HE J L, CHOE S Y, HONG C O. Analysis and control of a hybrid fuel delivery system for a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2008,185(2): 973-984. |
40 | AHLUWALIA R K, WANG X H. Fuel cell systems for transportation: status and trends[J]. Journal of Power Sources, 2008,177(1): 167-176. |
41 | ZHU Y H, LI Y H. New theoretical model for convergent nozzle ejector in the proton exchange membrane fuel cell system[J]. Journal of Power Sources, 2009,191(2): 510-519. |
42 | 周苏, 胡哲, 王凯凯, 等. 质子交换膜燃料电池系统引射器的氢气循环特性[J]. 同济大学学报(自然科学版), 2018, 46(08): 1115-1121. |
ZHOU S, HU Z, WANG K K, et al. Simulation analysis of cyclic characteristics of ejectors for PEMFC systems[J]. Journal of Tongji University (Natural Science), 2018, 46(8): 1115-1121. | |
43 | 张钦国, 郗富强, 王晓阳等. 质子交换膜燃料电池水管理研究进展[J]. 电源学报, 2019, 17(2): 26-31,91. |
ZHANG Q G, XI F Q, WANG X Y, et al. Research progress in water management of proton exchange membrane fuel cells[J]. Journal of Power Supply, 2019, 17(2): 26-31,91. | |
44 | 李菁, 汪怡平, 陶琦, 等.全功率燃料电池汽车散热系统设计、建模与分析[J]. 汽车工程学报, 2019, 9(6): 462-467. |
LI J, WANG Y P, TAO Q, et al. Design,modeling and analysis of heat dissipation system for full-power fuel cell vehicles[J]. Chinese Journal of Automotive Engineering, 2019, 9(6): 462-467. | |
45 | 程子枫, 李明, 郭勤, 等.节温器布置形式对质子交换膜燃料电池电堆冷却性能的影响[J]. 汽车技术, 2021(1): 25-30. |
CHENG Zifeng, LI Ming, GUO Qin, et al. Effects of thermostat layouts on cooling performance of proton exchange membrane fuel cell stacks[J]. Automobile Technology, 2021(1): 25-30. | |
46 | 周盟. 燃料电池用DC/DC变换器模型预测控制研究与实现[D]. 武汉:武汉理工大学, 2019. |
ZHOU M. Research and implementation of model predictive control for DC/DC converter of fuel cell[D]. Wuhan: Wuhan University of Technology, 2019. | |
47 | ZHANG Y, GAO Y P, LI J, et al. Interleaved switched-capacitor bidirectional DC-DC converter with wide voltage-gain range for energy storage systems[J]. IEEE Transactions on Power Electronics, 2018,33(5): 3852-3869. |
48 | 刘劼勋. 燃料电池汽车DC-DC变换器拓扑结构的研究[D]. 北京:清华大学, 2016. |
LIU J X. Research of DC-DC converter topology for fuel cell vehicles[D]. Beijing:Tsinghua University, 2016. | |
49 | 沈春晖, 余昊. 车用质子交换膜燃料电池发动机关键技术研究进展[J]. 武汉理工大学学报, 2015, 37(2): 34-39. |
SHEN C H, YU H. Research progress on key technologies of the proton exchange membrane fuel cell power system for vehicle[J]. Journal of Wuhan University of Technology, 2015, 37(2): 34-39. | |
50 | 胡佳丽. 水冷燃料电池运行控制研究[D]. 杭州:浙江大学, 2020. |
HU J L. Research and control strategy design of a water-cooled fuel cell system[D]. Hangzhou:Zhejiang University, 2020. | |
51 | 潘瑞. 面向燃料电池外特性的老化行为建模及延寿策略研究[D]. 合肥:中国科学技术大学, 2020. |
PAN R. Research on aging behavior modeling and lifespan prolongation strategy of fuel cell with external characteristics[D]. Hefei:University of Science and Technology of China, 2020. | |
52 | 华一丁, 龚进峰, 戎辉, 等. 基于模型的智能汽车电子电气架构发展综述[J]. 汽车零部件, 2019(2): 63-66. |
HUA Y D, GONG J F, RONG H, et al. Development review of model-based intelligent automotive electronic and electrical architecture[J]. Automobile Parts, 2019(2): 63-66. | |
53 | 李正辉, 贠海涛, 胡帅. 质子交换膜燃料电池系统设计与控制研究[J]. 电源技术, 2020, 44(4): 574-577, 639. |
LI Z H, YUN H T, HU S. Research on design and control of proton exchange membrane fuel cell system[J]. Chinese Journal of Power Sources, 2020, 44(4): 574-577, 639. | |
54 | 陈尚云, 曹广益. 燃料电池控制系统开发[J]. 微计算机信息, 2007, 23(31): 9-10, 37. |
CHEN S Y, CAO G Y. Exploitation of fuel cell control system based on DSP[J]. Microcomputer Information, 2007, 23(31): 9-10, 37. | |
55 | 宋英睿, 詹跃东. 质子交换膜燃料电池控制器的设计[J]. 微型机与应用, 2010, 29(21): 100-102. |
SONG Y R, ZHAN Y D. Design of proton exchange membrane fuel cell controller[J]. Example of Application, 2010, 29(21): 100-102. | |
56 | 董超, 张安民, 李静娴. 基于STM32F103的燃料电池控制系统设计[J]. 电源技术, 2019, 43(6): 975-978. |
DONG C, ZHANG A M, LI J X. Design of fuel cell control system based on STM32F103[J]. Chinese Journal of Power Sources, 2019, 43(6): 975-978. | |
57 | 洪木南, 张科勋, 卢兰光, 等. 基于TTCAN的燃料电池发动机分布式控制系统硬件在环仿真平台[J]. 汽车工程, 2007,29(9): 753-757. |
HONG M N, ZHANG K X, LU L G, et al. HIL simulation platform of TTCAN-based distributed control system for fuel cell engine[J]. Automotive Engineering, 2007,29(9): 753-757. | |
58 | LEE H Y, SU H C, CHEN Y S. A gas management strategy for anode recirculation in a proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2017, 43(7): 3803-3808. |
59 | TONG S, FANG J, ZHANG Y. Output tracking control of a hydrogen-air PEM fuel cell[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(2): 273-279. |
60 | LIU Z Y, CHEN J, LIU H, et al. Anode purge management for hydrogen utilization and stack durability improvement of PEM fuel cell systems[J]. Applied Energy, 2020, 275: 115110. |
61 | YE X C, ZHANG T, CHEN H C, et al. Fuzzy control of hydrogen pressure in fuel cell system[J]. International Journal of Hydrogen Energy, 2019, 44(16): 8460-8466. |
62 | HE H W, QUAN S W, WANG Y X. Hydrogen circulation system model predictive control for polymer electrolyte membrane fuel cell-based electric vehicle application[J]. International Journal of Hydrogen Energy, 2020, 45(39). |
63 | ZHAO D D, ZHENG Q, GAO F, et al. Disturbance decoupling control of an ultra-high speed centrifugal compressor for the air management of fuel cell systems[J]. International Journal of Hydrogen Energy, 2014, 39(4): 1788-1798. |
64 | LIU Z X, LI L, DING Y, et al. Modeling and control of an air supply system for a heavy duty PEMFC engine[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16230-16239. |
65 | OU K, WANG Y X, LI Z Z, et al. Feedforward fuzzy-PID control for air flow regulation of PEM fuel cell system[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11686-11695. |
66 | 周苏, 胡哲, 谢非. 车用质子交换膜燃料电池空气供应系统自适应解耦控制方法研究[J]. 汽车工程, 2020, 42(2): 172-177. |
ZHOU S, HU Z, XIE F. Study on adaptive decoupling control algorithm for air supply system of vehicle proton exchange membrane fuel cell[J]. Automotive Engineering, 2020, 42(2): 172-177. | |
67 | NA W, GOU B, KIM J, et al. Complementary cooperation dynamic characteristics analysis and modeling based on multiple-input multiple-output methodology combined with nonlinear control strategy for a polymer electrolyte membrane fuel cell[J]. Renewable Energy, 2020, 149: 273-286. |
68 | JIANG W H, ZHU Z W, LI C, et al. Observer-based model predictive control design for air supply system of automotive PEM fuel cells[C].Technical Committee on Control Theory, Chinese Association of Automation, 2020. |
69 | WOO C H, BENZIGER J B. PEM fuel cell current regulation by fuel feed control[J]. Chemical Engineering Science, 2007, 62(4): 957-968. |
70 | WANG F C, CHEN H T, YANG Y P, et al. Multivariable robust control of a proton exchange membrane fuel cell system[J]. Journal of Power Sources, 2008, 177(2): 393-403. |
71 | WANG F C, KO C C. Robust PID control of a PEMFC system[C].2010 IEEE International Conference on Control Applications. 179-184. |
72 | BAO C, OUYANG M G, YI B L. Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system-II. Linear and adaptive nonlinear control[J]. International Journal of Hydrogen Energy, 2006, 31(13): 1897-1913. |
73 | LI Q, CHEN W R, WANG Y Y, et al. H∞ optimal control for fuel cell system with adaptive focusing particle swarm optimization algorithm[C].IEEE, 2009. |
74 | HYUN D, KIM J. Study of external humidification method in proton exchange membrane fuel cell[J]. Journal of Power Sources, 2004, 126(1-2): 98-103. |
75 | WOOD D L, YI J S, NGUYEN T V. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells[J]. Electrochimica Acta, 1998, 43(24): 3795-3809. |
76 | 崔东周, 肖金生, 潘牧, 等. 质子交换膜燃料电池水、热、气管理[J]. 电池, 2004(5): 373-375. |
CUI D Z, XIAO J S, PAN M, et al. Water, heat and gas management of proton exchange membrane fuel cell[J]. Battery Bimonthly, 2004(5): 373-375. | |
77 | STASCHEWSKI D. Internal humidifying of PEM fuel cells[J]. International Journal of Hydrogen Energy, 1996, 21(5): 381-385. |
78 | 徐加忠, 马天才, 左琳琳. 质子交换膜燃料电池水管理研究现状[J]. 佳木斯大学学报(自然科学版), 2019, 37(5): 845-848. |
XU J Z, MA T C, ZUO L L. Research status of water management of proton exchange membrane fuel cells[J]. Journal of Jiamusi University (Natural Science Edition), 2019, 37(5): 845-848. | |
79 | 周浩然, 张永林, 宋少云, 等. 质子交换膜燃料电池排水技术现状研究[J]. 电源技术, 2020, 44(5): 774-777. |
ZHOU H R, ZHANG Y L, SONG S Y, et al. Research progress of proton exchange membrane fuel cell drainage technology[J]. Chinese Journal of Power Sources, 2020, 44(5): 774-777. | |
80 | 常国峰, 曾辉杰, 许思传. 燃料电池汽车热管理系统的研究[J]. 汽车工程, 2015, 37(8): 959-963. |
CHANG G F, ZENG H J, XU S C. A study on the thermal management system of fuel cell vehicle[J]. Automotive Engineering, 2015, 37(8): 959-963. | |
81 | 郑文杰, 杨径, 朱林培, 等. 车用燃料电池热管理性能仿真与试验研究[J]. 汽车工程, 2021, 43(3): 381-386. |
ZHENG W J, YANG J, ZHU L P, et al. Simulation and experimental study on thermal management system of vehicle fuel cell[J]. Automotive Engineering, 2021, 43(3): 381-386. | |
82 | SAYGILI Y, EROGLU I, KINCAL S. Model based temperature controller development for water cooled PEM fuel cell systems[J]. International Journal of Hydrogen Energy, 2015, 40(1): 615-622. |
83 | OU K, YUAN W W, CHOI M, et al. Performance increase for an open-cathode PEM fuel cell with humidity and temperature control[J]. International Journal of Hydrogen Energy, 2017, 42(50): 29852-29862. |
84 | 童正明, 黄浩明, 李立楠, 等. 燃料电池发动机电堆散热的控制[J]. 化工进展, 2015, 34(8): 3009-3014. |
TONG Z M, HUANG H M, LI L N, et al. Thermal control of fuel cell engine stack[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3009-3014. | |
85 | WANG F C, KO C C. Multivariable robust PID control for a PEMFC system[J]. International Journal of Hydrogen Energy, 2010, 35(19): 10437-10445. |
86 | CHATRATTANAWET N, HAKHEN T, KHEAWHOM S, et al. Control structure design and robust model predictive control for controlling a proton exchange membrane fuel cell[J]. Journal of Cleaner Production, 2017, 148: 934-947. |
87 | HAN J, YU S, YI S. Advanced thermal management of automotive fuel cells using a model reference adaptive control algorithm[J]. International Journal of Hydrogen Energy, 2017, 42(7): 4328-4341. |
88 | HUANG L H, CHEN J, LIU Z Y, et al. Adaptive thermal control for PEMFC systems with guaranteed performance[J]. International Journal of Hydrogen Energy, 2018, 43(25): 11550-11558. |
89 | ASLAM R M, INGHAM D B, ISMAIL M S, et al. Simultaneous thermal and visual imaging of liquid water of the PEM fuel cell flow channels[J]. Journal of the Energy Institute, 2019, 92(2): 311-318. |
90 | SONG K, WANG X, LI F, et al. Pontryagin's minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability[J]. Energy, 2020, 205: 118064. |
91 | 宋大凤, 雷宗坤, 曾小华, 等. 燃料电池混合动力系统多目标优化方法[J]. 湖南大学学报(自然科学版), 2019, 46(10): 46-53. |
SONG D F, LEI Z K, ZENG X H, et al. Multi-objective optimization method of fuel cell hybrid energy system[J]. Journal of Hunan University(Natural Sciences), 2019, 46(10): 46-53. | |
92 | ZHOU Y, RAVEY A, PÉRA M C. Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov driving pattern recognizer[J]. Applied Energy, 2020, 258(C):114057. |
93 | SUH K W, STEFANOPOULOU A G. Coordination of converter and fuel cell controllers[J]. International Journal of Energy Research, 2005, 29(12): 1167-1189. |
94 | 冯兴田, 陶媛媛, 孙添添. 基于储能的多端口电源系统能量管理与控制策略[J]. 电气自动化, 2018, 40(4): 66-69. |
FENG X T, TAO Y Y, SUN T T. Energy management and control strategy for multiport power supply systems based on energy storage[J]. Electrical Automation, 2018, 40(4): 66-69. |
[1] | Weifeng Kong,Chuan Fang,Jihong Liu,Jianqiu Li,Feiqiang Li,Shengtao Huang,Xingwang Zhao,Yan Shi,Dian Yuan,Liangfei Xu,Peng Sun,Enfei Zhou,Minggao Ouyang. Research on Fuel Cell Cold Start Strategy Based on Single Cell Impedance Consistency Purging [J]. Automotive Engineering, 2024, 46(2): 260-268. |
[2] | Xinjie Yuan,Fang Liu,Zhongjun Hou. Self-adaptive Porous Structure Detection of the Catalyst Layer in PEMFCs Based on GA-PSO-Otsu Algorithm [J]. Automotive Engineering, 2023, 45(9): 1702-1709. |
[3] | Wanteng Wang,Nan Li,Xueyi Bai,Dou Yang,Hang Li,Guijing Li. Research on Effect of Gas Diffusion Layer Layered Design on the Performance of PEMFC Stack [J]. Automotive Engineering, 2023, 45(9): 1720-1727. |
[4] | Junzhao Jiang,Wenhao Yang,Bin Peng,Ting Guo,Yekai Xu,Guozhuo Wang. Driving Range Prediction of Fuel Cell Vehicles Based on Energy Consumption Weighting Strategy [J]. Automotive Engineering, 2023, 45(12): 2357-2365. |
[5] | Zhongwen Zhu,Xin Wang,Weihai Jiang,Cheng Li. Research on Integrated Thermal Management System of Hydrogen Fuel Cell Vehicle [J]. Automotive Engineering, 2023, 45(11): 1991-2000. |
[6] | Lü Ping,Xin Sun,Youwei Xu,Bao Zhang,Jiahui Xu,Danmin Xing. An Experimental Study on Low Temperature Shutdown and Purging of Vehicle Fuel Cell Stack [J]. Automotive Engineering, 2023, 45(11): 2123-2129. |
[7] | Jichao Hong,Fengwei Liang,Haixu Yang,Kerui Li. Research on Intelligent Safety Management and Control Methods for Big-data-driven Battery Systems [J]. Automotive Engineering, 2023, 45(10): 1845-1861. |
[8] | Jiqing Chen,Changjing Zeng,Yunjiao Zhou,Fengchong Lan,Qingshan Liu. Flow Field Structure Optimization and Performance Improvement with Pentagon Baffle for Proton Exchange Membrane Fuel Cell [J]. Automotive Engineering, 2023, 45(10): 1862-1875. |
[9] | Shunchang Duan,Xianxu Bai,Qin Shi,Weihan Li,Guannan He. The Design of the Safety of the Intended Functionality of the Control Strategies for Vehicle Automatic Emergency Braking System [J]. Automotive Engineering, 2022, 44(9): 1305-1317. |
[10] | Zhiming Zhang,Jiaqi Pan,Tong Zhang. Analysis of Key Influencing Factors on Rotor Critical Speed of Centrifugal Air Compressor for Fuel Cell Vehicles [J]. Automotive Engineering, 2022, 44(9): 1386-1393. |
[11] | Chao Zhao,Dexu Bu,Lipeng Cao,Keqiang Li,Yugong Luo. Safety Control Strategy for Adaptive Cruise Control System in Heavy Rainfall Scenes [J]. Automotive Engineering, 2022, 44(8): 1117-1125. |
[12] | Xiaodong Wei,Bo Liu,Jianghao Leng,Xingyu Zhou,Chao Sun,Fengchun Sun. Research on Eco-driving of Fuel Cell Vehicles via Convex Optimization [J]. Automotive Engineering, 2022, 44(6): 851-858. |
[13] | Chuan Fang,Dian Yuan,Yangbin Shao,Liangfei Xu,Feiqiang Li,Zunyan Hu,Jianqiu Li,Bao Zhou,Wei Dai. Technical Breakthrough of New Generation Fuel Cell System for Winter Olympics Application Environment [J]. Automotive Engineering, 2022, 44(4): 535-544. |
[14] | Jiquan Han,Xiangcheng Kong,Jianmei Feng,Xueyuan Peng. Performance Analysis of Hydrogen Recirculation System of High Power Fuel Cell Vehicles [J]. Automotive Engineering, 2022, 44(1): 1-7. |
[15] | Wen Sun,Chenyang Li,Junnian Wang,Haozhe Qian,Wentong Zhang. Research on Ride Comfort of an Off-road Vehicle with Compound Suspension [J]. Automotive Engineering, 2022, 44(1): 105-114. |
|