Automotive Engineering ›› 2022, Vol. 44 ›› Issue (9): 1327-1338.doi: 10.19562/j.chinasae.qcgc.2022.09.004
Special Issue: 智能网联汽车技术专题-感知&HMI&测评2022年
Previous Articles Next Articles
Jie Hu1,2,3(),Boyuan Xu1,2,3,Zongquan Xiong1,2,3,Minjie Chang1,2,3,Di Guo1,2,3,Lihao Xie1,2,3
Received:
2022-03-22
Revised:
2022-04-28
Online:
2022-09-25
Published:
2022-09-21
Contact:
Jie Hu
E-mail:auto_hj@163.com
Jie Hu,Boyuan Xu,Zongquan Xiong,Minjie Chang,Di Guo,Lihao Xie. Cross-Domain Object Detection Algorithm Based on Multi-scale Mask Classification Domain Adaptive Network[J].Automotive Engineering, 2022, 44(9): 1327-1338.
"
方法 | 人 | 骑手 | 汽车 | 货车 | 公交车 | 火车 | 摩托车 | 自行车 | mAP/% |
---|---|---|---|---|---|---|---|---|---|
Faster R-CNN | 24.1 | 33.1 | 34.3 | 4.1 | 22.3 | 3.0 | 15.3 | 26.5 | 20.3 |
DA-Faster[ | 25.0 | 31.0 | 40.5 | 22.1 | 35.3 | 20.2 | 20.0 | 27.1 | 27.6 |
StrongWeak[ | 29.9 | 42.3 | 43.5 | 24.5 | 36.2 | 32.6 | 30.0 | 35.3 | 34.3 |
DD-MRL[ | 30.8 | 40.5 | 44.3 | 27.2 | 38.4 | 34.5 | 28.4 | 32.2 | 34.6 |
ATF[ | 34.6 | 47.0 | 50.0 | 23.7 | 43.3 | 38.7 | 33.4 | 38.8 | 38.7 |
VDD[ | 33.4 | 44.0 | 51.7 | 33.9 | 52.0 | 34.7 | 34.2 | 36.8 | 40.0 |
MMCN(本文) | 33.4 | 46.8 | 51.9 | 29.1 | 48.4 | 43.2 | 36.0 | 37.4 | 40.8 |
"
方法 | 权重 | 人 | 骑手 | 汽车 | 货车 | 公交车 | 火车 | 摩托车 | 自行车 | mAP/% |
---|---|---|---|---|---|---|---|---|---|---|
MMCN | 0.1 | 33.5 | 44.6 | 50.9 | 28.0 | 44.5 | 38.3 | 34.3 | 35.1 | 38.6 |
0.2 | 33.4 | 47.1 | 50.9 | 30.1 | 44.9 | 35.6 | 31.9 | 36.1 | 38.8 | |
0.3 | 26.3 | 41.5 | 32.4 | 21.9 | 32.4 | 9.4 | 28.3 | 23.4 | 28.4 | |
0.4 | 33.4 | 46.1 | 50.1 | 26.1 | 41.7 | 23.0 | 32.6 | 32.5 | 35.7 | |
0.5 | 33.5 | 45.2 | 50.5 | 33.4 | 43.6 | 40.8 | 30.9 | 36.4 | 39.3 | |
0.6 | 26.0 | 43.1 | 43.8 | 20.2 | 34.3 | 14.6 | 23.4 | 22.6 | 28.5 | |
0.7 | 32.9 | 46.5 | 50.3 | 29.7 | 45.2 | 36.7 | 29.2 | 35.4 | 38.2 | |
0.8 | 33.4 | 46.2 | 50.9 | 27.3 | 46.8 | 34.8 | 33.0 | 35.3 | 38.5 | |
0.9 | 33.6 | 46.3 | 50.7 | 29.8 | 46.2 | 31.6 | 33.3 | 37.4 | 38.6 |
"
方法 | 中间层1 | 中间层2 | 人 | 骑手 | 汽车 | 货车 | 公交车 | 火车 | 摩托车 | 自行车 | mAP/% |
---|---|---|---|---|---|---|---|---|---|---|---|
MMCN | 7 | 9 | 33.7 | 46.0 | 50.9 | 28.2 | 46.6 | 36.4 | 34.6 | 36.3 | 39.1 |
5 | 9 | 33.5 | 46.7 | 50.7 | 26.8 | 43.9 | 24.0 | 32.9 | 36.2 | 36.8 | |
7 | 8 | 33.1 | 45.4 | 50.9 | 25.3 | 45.7 | 19.7 | 35.0 | 36.8 | 36.5 | |
6 | 8 | 33.3 | 47.0 | 51.3 | 30.2 | 46.3 | 23.9 | 29.2 | 36.5 | 37.2 | |
5 | 8 | 33.4 | 45.0 | 51.0 | 31.1 | 45.5 | 22.9 | 35.5 | 36.4 | 37.6 | |
7 | 10 | 33.3 | 46.6 | 51.1 | 29.4 | 44.8 | 35.0 | 34.0 | 36.0 | 38.8 | |
6 | 10 | 33.3 | 44.7 | 51.0 | 30.0 | 44.4 | 37.3 | 33.4 | 35.8 | 38.7 | |
5 | 10 | 32.9 | 44.6 | 48.6 | 23.4 | 39.2 | 25.8 | 30.1 | 32.4 | 34.6 | |
6 | 9 | 33.4 | 46.8 | 51.9 | 29.1 | 48.4 | 43.2 | 36.0 | 37.4 | 40.8 |
1 | REDMON J, FARHADI A. Yolov3: An incremental improveme-nt[J].arXiv preprint arXiv:,2018. |
2 | REN S, HE K, GIRSHICK R, et al. Faster r-cnn: towards re-al-time object detection with region proposal networks[J].Advances in Neural Information Processing Systems,2015,28. |
3 | 邱锡鹏.《神经网络与深度学习》[J].中文信息学报, 2020(7):1. |
4 | GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].Journal of Machine Learning Research, 2016,17(59):1-35. |
5 | LONG M,ZHU H,WANG J,et al.Unsupervised domain adaptati-on with residual transfer networks[C]. Proc. of the Neural Information Processing Systems,2016. |
6 | TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial discriminative domain adaptation[C]. Proc. of the IEEE Conference on Computer Vision Pattern Recognition,2017. |
7 | TZENG E,HOFFMAN J,ZHANG N,et al.Deep domain confusion: maximizing for domain invariance[EB/OL].arXiv:1412.3474,2014.1,2. |
8 | SAITO K,USHIKU Y,HARADA T,et al.Adversarial dropout regularization.[C]. Proc. of the International Conference and Learning Representations,2018. |
9 | LIU M Y,BREUEL T,KAUTZ J.Unsupervised image-to-image translation networks. [C]. Proc. of the Neural Information Processing Systems,2017. |
10 | HOFFMAN J,TZENG E,PARK T,et al.Cycada: cycle-consistent adversarial domain adaptation[C].Proc. of the International Conference and Machine Learning,2018.1. |
11 | CHEN C Q,XIE W P,HUANG W B,et al.Progressive feature alignment for unsupervised domain adaptation[C]. Proc. of the IEEE Conference on Computer Vision Pattern Recognition,2019:627–636. |
12 | GANIN Y,LEMPITSKY V.Unsupervised domain adaptation by backpropagation[C].Proc. of the International Conference and Machine Learning,2015:1180–1189. |
13 | LONG M S,CAO Z J,WANG J M,et al.Conditional adversarial domain adaptation[C].Proc. of the Neural Information Processing Systems,2018:1640–1650. |
14 | SHU R,HUNG H B,NARUI H,et al. A dirt approach to unsup-ervised domain adaptation[C].Proc. of the International Conference and Learning Rrepresentations,2018. |
15 | TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial discriminative domain adaptation[C]. Proc. of the IEEE Conference on Computer Vision Pattern Recognition,2017. |
16 | XIE S A,ZHENG Z B,CHEN L,et al.Learning semantic represe-ntations for unsupervised domain adaptation[C].Proc. of the International Conference and Machine Learning,2018:627–636. |
17 | BEN-DAVID S,BLITZER J,CRAMMER K,et al.A theory of learning from different domains[J].Machine Learning, 2010,79(1-2):151-175. |
18 | BEN-DAVID S,BLITZER J,CRAMMER K,et al.Analysis of representations for domain adaptation[C].Proc. of the Neural Inf-ormation Processing Systems,2007.1,2. |
19 | CHEN Y,LI W,SAKARIDIS C,et al. Domain adaptive Faster R-CNN for object detection in the wild[C].Proc. of the IEEE Conference on Computer Vision Pattern Recognition,2018:3339-3348. |
20 | ZHU X,PANG J,YANG C,et al,Adapting object detectors via selective cross-domain alignment[C].Proc. of the IEEE Conference on Computer Vision Pattern Recognition,2019:687-696. |
21 | LI Y J, DAI X, MA C Y, et al. Cross-domain object detection via adaptive selftraining[J]. arXiv preprint arXiv:, 2021. |
22 | FUJII K, KERA H, KAWAMOTO K. Adversarially trained object detector for unsupervised domain adaptation[J]. arXiv preprint arXiv:, 2021. |
23 | ZHUANG C, HAN X, HUANG W, et al. iFAN: image-instance full alignment networks for adaptive object detection[C].Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(7): 13122-13129. |
24 | REDKO I, MORVANT E, HABRARD A, et al. A survey on domain adaptation theory[J]. arXiv preprint arXiv:, 2020. |
25 | SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition.[C].Proc. of the Intern-ational Conference and Learning Rrepresentations,2015. |
26 | SAITO K,USHIKU Y,HARADA T,et al,Strong-weak distribution alignment for adaptive object detection[C]. Proc. of the IEEE Conference on Computer Vision Pattern Recognition,2019:6956-6965. |
27 | LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense obj-ect detection [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,PP(99):2999-3007. |
28 | ZHANG H,TIAN Y,WANG K,et al,Synthetic-to-real domain adaptation for object instance segmentation[C]. Proc. of the 2019 International Joint Conference on Neural Netwo-rks,2019:1-7. |
29 | KIM T,JEONG M,KIM S,et al.Diversify andmatch: a domain adaptive representation learning paradigm for object detection[C].Proc. of the IEEE Conference on Computer Vision Pattern Recognition,2019:12456–12465. |
30 | HE Z,ZHANG L.Domain adaptive object detection via asymmetric tri-way Faster-RCNN[C]. ECCV 2020: 309–324. |
31 | WU A, LIU R, HAN Y, et al. Vector-decomposed disentanglement for domain-invariant object detection[C] .Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 9342-9351. |
32 | CHEN H Y, WANG P H, LIU C H, et al. Complement objective training[J]. arXiv preprint arXiv:, 2019. |
[1] | Ze Gao, Zunkang Chu, Jiasheng Shi, Fu Lin, Weixiong Rao, Haiyan Yu. Research on Fast Prediction Method of Stress Field of Automotive Parts Based on Graph Network [J]. Automotive Engineering, 2024, 46(1): 170-178. |
[2] | Weiguo Liu,Zhiyu Xiang,Rui Liu,Guodong Li,Zixu Wang. Research on End-to-End Vehicle Motion Planning Method Based on Deep Learning [J]. Automotive Engineering, 2023, 45(8): 1343-1352. |
[3] | Dongyu Zhao, Shuen Zhao. Autonomous Driving 3D Object Detection Based on Cascade YOLOv7 [J]. Automotive Engineering, 2023, 45(7): 1112-1122. |
[4] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
[5] | Yanyan Chen,Hai Wang,Yingfeng Cai,Long Chen,Yicheng Li. Efficient Automatic Driving Instance Segmentation Method Based on Detection [J]. Automotive Engineering, 2023, 45(4): 541-550. |
[6] | Fengchong Lan,Jikai Chen,Jiqing Chen,Xinping Jiang,Zihan Li,Wei Pan. Research on Lithium Battery Remaining Useful Life Prediction Method Driven by Real Vehicle Data [J]. Automotive Engineering, 2023, 45(2): 175-182. |
[7] | Linhui Li,Xinliang Zhang,Yifan Fu,Jing Lian,Jiaxu Ma. Research on Visible Light and Infrared Post-Fusion Detection Based on TC-YOLOv7 Algorithm [J]. Automotive Engineering, 2023, 45(12): 2280-2290. |
[8] | Zhengfa Liu,Ya Wu,Peigen Liu,Rongqi Gu,Guang Chen. Cross-Domain Object Detection for Intelligent Driving Based on Joint Distribution Matching of Features and Labels [J]. Automotive Engineering, 2023, 45(11): 2082-2091. |
[9] | Xiaojun Zhang,Jingzhe Xi,Yanlei Shi,Anlu Yuan. Lightweight YOLOv7-R Algorithm for Road-Side View Target Detection [J]. Automotive Engineering, 2023, 45(10): 1833-1844. |
[10] | Jie Hu,Yuanjie Li,Hao Geng,Huangzheng Geng,Xiong Guo,Hongwei Yi. Construction of Vehicle Fault Knowledge Graph Based on Deep Learning [J]. Automotive Engineering, 2023, 45(1): 52-60. |
[11] | Guihong Bi,Xu Xie,Zilong Cai,Zhao Luo,Chenpeng Chen,Xin Zhao. Capacity Estimation of Lithium-ion Battery Based on Deep Learning Under Dynamic Conditions [J]. Automotive Engineering, 2022, 44(6): 868-878. |
[12] | Dafang Wang,Jingdong Du,Jiang Cao,Mei Zhang,Gang Zhao. Research on Style Transfer Network for Autonomous Driving Data Generation [J]. Automotive Engineering, 2022, 44(5): 684-690. |
[13] | Desheng Xie,Youchun Xu,Feng Lu,Shiju Pan. Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion [J]. Automotive Engineering, 2022, 44(3): 340-349. |
[14] | Jinghua Guo,Zhifei He,Yugong Luo,Keqiang Li. Vehicle Cut-in Trajectory Prediction Based on Deep Learning in a Human-machine Mixed Driving Environment [J]. Automotive Engineering, 2022, 44(2): 153-160. |
[15] | Yuande Jiang,Bing Zhu,Xiangmo Zhao,Jian Zhao,Bingbing Zheng. Modeling of Traffic Vehicle Interaction for Autonomous Vehicle Testing [J]. Automotive Engineering, 2022, 44(12): 1825-1833. |
|