Automotive Engineering ›› 2024, Vol. 46 ›› Issue (11): 2017-2027.doi: 10.19562/j.chinasae.qcgc.2024.11.008
Previous Articles Next Articles
Zhijun Chen1,2,Chaowei Wang1,2,Chaozhong Wu1,3,4(),Chuang Qian1,Huaizhu Wu5,Guangjun Shen5
Received:
2024-06-07
Revised:
2024-07-09
Online:
2024-11-25
Published:
2024-11-22
Contact:
Chaozhong Wu
E-mail:wucz@whut.edu.cn
Zhijun Chen,Chaowei Wang,Chaozhong Wu,Chuang Qian,Huaizhu Wu,Guangjun Shen. Algorithm for Detecting Free Space in Underground Mine Tunnels for Autonomous Vehicles[J].Automotive Engineering, 2024, 46(11): 2017-2027.
"
层名 | 输出特征图尺寸(H×W×C) | 网络层主要结构 | ||
---|---|---|---|---|
L1 | 128×128×128 | Inverted Residual Block×1,stride=2 | ||
L2 | 64×64×256 | Inverted Residual Block×1,stride=2 | ||
L3 | 32×32×64 | Inverted Residual Block×4 | ||
L4 | 16×16×128 | 32×32×64 | bottleneck block×2 | 大核bottleneck block×2 |
DBFAM | DBFAM模块×1 | |||
L5 | 8×8×256 | 32×32×96 | bottleneck block×2 | 大核bottleneck block×2 |
DBFAM | DBFAM模块×1 | |||
L6 | 4×4×384 | 32×32×128 | bottleneck block×2 | bottleneck block×2 |
SAPPM-L | SAPPM-H | SAPPM-L×1 | SAPPM-H×1 | |
DBFAM | DBFAM |
1 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440. |
2 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer International Publishing, 2015: 234-241. |
3 | ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. Unet++: a nested u-net architecture for medical image segmentation[C]. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4. Springer International Publishing, 2018: 3-11. |
4 | HUANG H, LIN L, TONG R, et al. UNet 3+: a full-scale connected uNet for medical image segmentation[C]. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020: 1055-1059. |
5 | POUDEL R P K, LIWICKI S, CIPOLLA R. Fast-SCNN: fast semantic segmentation network[J]. arXiv preprint arXiv:, 2019. |
6 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected crfs[J]. arXiv preprint arXiv:, 2014. |
7 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. |
8 | CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv:, 2017. |
9 | CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 801-818. |
10 | ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881-2890. |
11 | STRUDEL R, GARCIA R, LAPTEV I, et al. Segmenter: transformer for semantic segmentation[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 7262-7272. |
12 | CHENG B, MISRA I, SCHWING A G, et al. Masked-attention mask transformer for universal image segmentation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 1290-1299. |
13 | ZHAO W, RAO Y, LIU Z, et al. Unleashing text-to-image diffusion models for visual perception[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 5729-5739. |
14 | PASZKE A, CHAURASIA A, KIM S, et al. ENet: a deep neural network architecture for real-time semantic segmentation[J]. arXiv preprint arXiv:, 2016. |
15 | HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:, 2017. |
16 | SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520. |
17 | HOWARD A, SANDLER M, CHU G, et al. Searching for mobileNetV3[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324. |
18 | GAMAL M, SIAM M, ABDEL-RAZEK M. ShuffleSeg: real-time semantic segmentation network[J]. arXiv preprint arXiv:, 2018. |
19 | ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856. |
20 | MA N, ZHANG X, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 116-131. |
21 | YU C, WANG J, PENG C, et al. BiseNet: bilateral segmentation network for real-time semantic segmentation[C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 325-341. |
22 | PAN H, HONG Y, SUN W, et al. Deep dual-resolution networks for real-time and accurate semantic segmentation of traffic scenes[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(3): 3448-3460. |
23 | XU J, XIONG Z, BHATTACHARYYA S P. PIDNet: a real-time semantic segmentation network inspired by PID controllers[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 19529-19539. |
24 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
25 | HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. |
26 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. |
27 | SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 761-769. |
[1] | Daofei Li,Hao Pan. Application of Scenario Complexity Evaluation in Trajectory Prediction and Automated Driving Decision-Making [J]. Automotive Engineering, 2024, 46(9): 1556-1563. |
[2] | Hai Wang,Jianguo Li,Yingfeng Cai,Long Chen. A LiDAR-Based Dynamic Driving Scene Multi-task Segmentation Network [J]. Automotive Engineering, 2024, 46(9): 1608-1616. |
[3] | Jianan Zhang,Zhaozheng Hu,Jie Meng,Huahua Hu,Jie Zuo. Distributed Simulation Platform Architecture and Application of Autonomous Driving for Vehicle-Road-Map Collaboration [J]. Automotive Engineering, 2024, 46(8): 1335-1345. |
[4] | Le Tao,Hai Wang,Yingfeng Cai,Long Chen. Multi-object Detection Algorithm Based on Point Cloud for Autonomous Driving Scenarios [J]. Automotive Engineering, 2024, 46(7): 1208-1218. |
[5] | Linhui Li,Yifan Fu,Ting Wang,Xuecheng Wang,Jing Lian. Trajectory Prediction Method Enhanced by Self-supervised Pretraining [J]. Automotive Engineering, 2024, 46(7): 1219-1227. |
[6] | Hai Wang,Yuxuan Ding,Tong Luo,Meng Qiu,Yingfeng Cai,Long Chen. A Multi-class Multi-target Tracking Algorithm Combining Motion Speed and Appearance Features in Driving Scenarios [J]. Automotive Engineering, 2024, 46(6): 956-964. |
[7] | Jing Huang,Xiangzhen Liu,Xiaoyang Deng,Ran Chen. Research on Intelligent Vehicle Trajectory Planning Based on Multimodal Trajectory Prediction [J]. Automotive Engineering, 2024, 46(6): 965-974. |
[8] | Fuxing Yao,Chao Sun,Yungang Lan,Bing Lu,Bo Wang,Haiyang Yu. A Lane Change Decision Method for Intelligent Connected Vehicles Based on Mixture of Expert Model [J]. Automotive Engineering, 2024, 46(5): 882-892. |
[9] | Mengfan Li,Zhongxiang Feng,Weihua Zhang,Jingyu Li. Study on Driver's Visual Transfer Characteristics During the Takeover Process of Human-Computer Co-driving Mode [J]. Automotive Engineering, 2024, 46(5): 795-804. |
[10] | Ting Chikit,Yafei Wang,Yichen Zhang,Mingyu Wu,Yile Wang. Energy-Saving Planning Method for Autonomous Driving Mining Trucks Based on Composite Dynamic Sampling [J]. Automotive Engineering, 2024, 46(4): 588-595. |
[11] | Yiwei Zhou,Mo Xia,Bing Zhu. Multimodal Vehicle Trajectory Prediction Methods Considering Multiple Traffic Participants in Urban Road Scenarios [J]. Automotive Engineering, 2024, 46(3): 396-406. |
[12] | Xiaocong Zhao,Shiyu Fang,Zirui Li,Jian Sun. Extraction and Application of Key Utility Term for Social Driving Interaction [J]. Automotive Engineering, 2024, 46(2): 230-240. |
[13] | Xiaolin Tang,Lu Gan,Guofa Li,Keqiang Li,Wenbo Chu. Large Model Alignment Technology for Autonomous Driving: A Review [J]. Automotive Engineering, 2024, 46(11): 1937-1951. |
[14] | Song Gao,Jianglin Zhou,Bolin Gao,Jian Lu,He Wang,Yueyun Xu. Pedestrian Trajectory Prediction Method Based on Multi-information Fusion Network [J]. Automotive Engineering, 2024, 46(11): 1973-1982. |
[15] | Hailun Zhang,Guangwei Wang,Qingwen Meng,Qing Xu,Jianqiang Wang,Keqiang Li. An Online Semi-supervised Hybrid Approach for Vehicle Behavior Perception at Intersections [J]. Automotive Engineering, 2024, 46(11): 1993-2004. |