Automotive Engineering ›› 2024, Vol. 46 ›› Issue (11): 1973-1982.doi: 10.19562/j.chinasae.qcgc.2024.11.004
Previous Articles Next Articles
Song Gao1,2,Jianglin Zhou2,Bolin Gao1(),Jian Lu2,He Wang2,Yueyun Xu2
Received:
2024-05-28
Revised:
2024-07-01
Online:
2024-11-25
Published:
2024-11-22
Contact:
Bolin Gao
E-mail:gaobolin@tsinghua.edu.cn
Song Gao,Jianglin Zhou,Bolin Gao,Jian Lu,He Wang,Yueyun Xu. Pedestrian Trajectory Prediction Method Based on Multi-information Fusion Network[J].Automotive Engineering, 2024, 46(11): 1973-1982.
"
方法 | Soc | Env | Soc-Env | PSI | ||
---|---|---|---|---|---|---|
MSE↓ (0.5 s/1.0 s/1.5 s) | (1.5 s) | (1.5 s) | ||||
Bayesian-LSTM[ | √ | 159/539/1 535 | 5 615 | 1 447 | ||
FOL-X[ | √ | 147/484/1 374 | 4 924 | 1 290 | ||
PIEtraj[ | √ | 110/399/1 280 | 4 780 | 1 183 | ||
BiTraP[ | √ | 93/378/1 206 | 4 565 | 1 105 | ||
eP2P[ | √ | √ | ||||
SGNet[ | √ | 4 076 | 996 | |||
CVTF[ | √ | 98/314/1 190 | 4 520 | 1 022 | ||
Pedformer[ | √ | √ | √ | 93/364/1 134 | 4 364 | 1 080 |
VOSTN[ | √ | 94/364/1 134 | 3 980 | |||
MPIFN (Ours) | √ | √ | √ | 81/307/ | 829 |
"
方法 | Soc | Env | Soc-Env | PSI | |||
---|---|---|---|---|---|---|---|
ADE↓ (0.5 s/1.0 s/1.5 s) | FDE↓ (0.5 s/1.0 s/1.5 s) | ARB↓ (0.5 s/1.0 s/1.5 s) | FRB↓ (0.5 s/1.0 s/1.5 s) | ||||
Bayesian-LSTM[ | √ | ||||||
FOL-X[ | √ | ||||||
PIEtraj[ | √ | ||||||
BiTraP[ | √ | ||||||
eP2P[ | √ | √ | |||||
SGNet[ | √ | ||||||
本文 | √ | √ | √ | 10.00/17.13/27.67 | 14.66/34.56/62.21 | 18.08/29.21/44.98 | 25.27/54.62/93.99 |
"
项目 | 输入 | 时空信息提取模块 + 局部环境信息提取模块 + 多模态特征融合模块 | 解码器 | MSE (1.5 s) |
---|---|---|---|---|
Variant1 | Bbox | LSTM + - + - | FC | 2 458 |
Variant2 | Bbox+Image | LSTM + 传统卷积 + Concat | FC | 2 103 |
Variant3 | Bbox+Image | 时空注意力 + 传统卷积 + Concat | FC | 1 502 |
Variant4 | Bbox+Image | 时空注意力 + 可形变卷积 + Concat | FC | 1 435 |
Variant5 | Bbox+Image | 时空注意力 + 可形变卷积 + 交叉注意力 | FC | 1 307 |
本文 | Bbox+Image | 时空注意力 + 可形变卷积 + 交叉注意力 | LSTM | 1 106 |
1 | MARCHETTI F, BECATTINI F, SEIDENARI L, et al. Smemo: social memory for trajectory forecasting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(6): 4410-4425. |
2 | SUN J, LI Y, CHAI L, et al. Modality exploration, retrieval and adaptation for trajectory prediction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 15051-15064. |
3 | SHI L, WANG L, LONG C, et al. Representing multimodal behaviors with mean location for pedestrian trajectory prediction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9): 11184-11202. |
4 | YAO Y, ATKINS E, JOHNSON-ROBERSON M,et al.BiTraP: bi-directional pedestrian trajectory prediction with multi-modal goal estimation[J]. IEEE Robotics and Automation Letters,2021,6(2):1463-1470. |
5 | 郭景华, 何智飞, 罗禹贡, 等. 人机混驾环境下基于深度学习的车辆切入轨迹预测[J]. 汽车工程, 2022, 44(2): 153-160. |
GUO J H, HEI Z F, LUO Y G, et al. Vehicle cut-in trajectory prediction based on deep learning in a human-machine mixed driving environment [J]. Automotive Engineering, 2022, 44(2): 153-160. | |
6 | 郭景华, 肖宝平, 王靖瑶, 等. 基于 Residual BiLSTM 网络的车辆切入意图预测研究[J]. 汽车工程, 2021, 43(7): 971-977. |
GUO J H, XIAO B P, WANG J Y, et al. Study on vehicle cut⁃in intention prediction based on residual BiLSTM network [J]. Automotive Engineering, 2021, 43(7): 971-977. | |
7 | GODARD C, MAC AODHA O, BROSTOW G J. Unsupervised monocular depth estimation with left-right consistency[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 270-279. |
8 | CHEN Y, SCHMID C, SMINCHISESCU C. Self-supervised learning with geometric constraints in monocular video: connecting flow, depth, and camera[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 7063-7072. |
9 | BHATTACHARYYA A, FRITZ M, SCHIELE B. Long-term on-board prediction of people in traffic scenes under uncertainty[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4194-4202. |
10 | YAO Y, XU M, CHOI C, et al. Egocentric vision-based future vehicle localization for intelligent driving assistance systems[C]. 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 9711-9717. |
11 | YAGI T, MANGALAM K, YONETANI R, et al. Future person localization in first-person videos[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7593-7602. |
12 | CHEN T, JING T, TIAN R, et al. Psi: a pedestrian behavior dataset for socially intelligent autonomous car[J]. arXiv preprint arXiv: , 2021. |
13 | RASOULI A, KOTSERUBA I, KUNIC T, et al. Pie: a large-scale dataset and models for pedestrian intention estimation and trajectory prediction[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6262-6271. |
14 | WANG C, WANG Y, XU M, et al. Stepwise goal-driven networks for trajectory prediction[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2716-2723. |
15 | NEUMANN L, VEDALDI A. Pedestrian and ego-vehicle trajectory prediction from monocular camera[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10204-10212. |
16 | SU Y, LI Y, WANG W, et al. A unified environmental network for pedestrian trajectory prediction[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(5): 4970-4978. |
17 | FU Z, JIANG K, XIE C, et al. Summary and reflections on pedestrian trajectory prediction in the field of autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2024. |
18 | HASAN F, HUANG H. MALS-Net: a multi-head attention-based LSTM sequence-to-sequence network for socio-temporal interaction modelling and trajectory prediction[J]. Sensors, 2023, 23(1): 530. |
19 | 桑海峰, 赵梓杉, 王金玉, 等. 基于车辆轨迹预测对抗性攻击与鲁棒性研究[J]. 汽车工程, 2024, 46(3): 407-417. |
SANG H F, ZHAO Z S, WANG J Y, et al. Research on adversarial attacks and robustness in vehicle trajectory prediction [J]. Automotive Engineering, 2024, 46(3): 407-417. | |
20 | DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 764-773. |
21 | DU J, WANG S, MIAO H, et al. Multi-channel pooling graph neural networks[C]. IJCAI. 2021: 1442-1448. |
22 | GROSSBERG S. Recurrent neural networks[J]. Scholarpedia, 2013, 8(2): 1888. |
23 | GRAVES A, GRAVES A. Long short-term memory[J]. Supervised Sequence Labelling with Recurrent Neural Networks, 2012: 37-45. |
24 | RASOULI A, KOTSERUBA I, TSOTSOS J K. Are they going to cross? a benchmark dataset and baseline for pedestrian crosswalk behavior[C]. Proceedings of the IEEE International Conference on Computer Vision Workshops, 2017: 206-213. |
25 | KOSARAJU V, SADEGHIAN A, MARTÍN-MARTÍN R, et al. Social-bigat: multimodal trajectory forecasting using bicycle-gan and graph attention networks[J]. Advances in Neural Information Processing Systems, 2019, 32. |
26 | YAO Y, XU M, WANG Y, et al. Unsupervised traffic accident detection in first-person videos[C]. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 273-280. |
27 | HE Y, YANG Y, CAI Y, et al. Predicting pedestrian tracks around moving vehicles based on conditional variational transformer[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023: 09544070231175536. |
28 | RASOULI A, KOTSERUBA I. PedFormer: pedestrian behavior prediction via cross-modal attention modulation and gated multitask learning[C]. 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023: 9844-9851. |
29 | WANG J, SANG H, CHEN W, et al. VOSTN: variational one-shot transformer network for pedestrian trajectory prediction[J]. Physica Scripta, 2024, 99(2): 026002. |
30 | LABRíN C, URDINEZ F. Principal component analysis[M]. R for Political Data Science. Chapman and Hall/CRC, 2020: 375-393. |
31 | SANAGA K P, YANG M S. Unsupervised K-means clustering algorithm [J]. IEEE Access, 2020, 8: 80716-80727. |
32 | HAN K, XIAO A, WU E, et al. Transformer in transformer[J]. Advances in Neural Information Processing Systems, 2021, 34: 15908-15919. |
33 | OKK AN U, SERBES Z A. Rainfall-runoff modeling using least squares support vector machines[J]. Environmetrics, 2012, 23(6): 549-564. |
34 | TREIBER M, HENNECKE A, HELBING D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62(2): 1805. |
35 | LIU L, FENG S, FENG Y, et al. Learning-based stochastic driving model for autonomous vehicle testing[J]. Transportation Research Record, 2022, 2676(1): 54-64. |
[1] | Daofei Li,Hao Pan. Application of Scenario Complexity Evaluation in Trajectory Prediction and Automated Driving Decision-Making [J]. Automotive Engineering, 2024, 46(9): 1556-1563. |
[2] | Hai Wang,Jianguo Li,Yingfeng Cai,Long Chen. A LiDAR-Based Dynamic Driving Scene Multi-task Segmentation Network [J]. Automotive Engineering, 2024, 46(9): 1608-1616. |
[3] | Jianan Zhang,Zhaozheng Hu,Jie Meng,Huahua Hu,Jie Zuo. Distributed Simulation Platform Architecture and Application of Autonomous Driving for Vehicle-Road-Map Collaboration [J]. Automotive Engineering, 2024, 46(8): 1335-1345. |
[4] | Le Tao,Hai Wang,Yingfeng Cai,Long Chen. Multi-object Detection Algorithm Based on Point Cloud for Autonomous Driving Scenarios [J]. Automotive Engineering, 2024, 46(7): 1208-1218. |
[5] | Linhui Li,Yifan Fu,Ting Wang,Xuecheng Wang,Jing Lian. Trajectory Prediction Method Enhanced by Self-supervised Pretraining [J]. Automotive Engineering, 2024, 46(7): 1219-1227. |
[6] | Hai Wang,Yuxuan Ding,Tong Luo,Meng Qiu,Yingfeng Cai,Long Chen. A Multi-class Multi-target Tracking Algorithm Combining Motion Speed and Appearance Features in Driving Scenarios [J]. Automotive Engineering, 2024, 46(6): 956-964. |
[7] | Jing Huang,Xiangzhen Liu,Xiaoyang Deng,Ran Chen. Research on Intelligent Vehicle Trajectory Planning Based on Multimodal Trajectory Prediction [J]. Automotive Engineering, 2024, 46(6): 965-974. |
[8] | Mengfan Li,Zhongxiang Feng,Weihua Zhang,Jingyu Li. Study on Driver's Visual Transfer Characteristics During the Takeover Process of Human-Computer Co-driving Mode [J]. Automotive Engineering, 2024, 46(5): 795-804. |
[9] | Fuxing Yao,Chao Sun,Yungang Lan,Bing Lu,Bo Wang,Haiyang Yu. A Lane Change Decision Method for Intelligent Connected Vehicles Based on Mixture of Expert Model [J]. Automotive Engineering, 2024, 46(5): 882-892. |
[10] | Ting Chikit,Yafei Wang,Yichen Zhang,Mingyu Wu,Yile Wang. Energy-Saving Planning Method for Autonomous Driving Mining Trucks Based on Composite Dynamic Sampling [J]. Automotive Engineering, 2024, 46(4): 588-595. |
[11] | Yiwei Zhou,Mo Xia,Bing Zhu. Multimodal Vehicle Trajectory Prediction Methods Considering Multiple Traffic Participants in Urban Road Scenarios [J]. Automotive Engineering, 2024, 46(3): 396-406. |
[12] | Xiaocong Zhao,Shiyu Fang,Zirui Li,Jian Sun. Extraction and Application of Key Utility Term for Social Driving Interaction [J]. Automotive Engineering, 2024, 46(2): 230-240. |
[13] | Xiaolin Tang,Lu Gan,Guofa Li,Keqiang Li,Wenbo Chu. Large Model Alignment Technology for Autonomous Driving: A Review [J]. Automotive Engineering, 2024, 46(11): 1937-1951. |
[14] | Hailun Zhang,Guangwei Wang,Qingwen Meng,Qing Xu,Jianqiang Wang,Keqiang Li. An Online Semi-supervised Hybrid Approach for Vehicle Behavior Perception at Intersections [J]. Automotive Engineering, 2024, 46(11): 1993-2004. |
[15] | Zhijun Chen,Chaowei Wang,Chaozhong Wu,Chuang Qian,Huaizhu Wu,Guangjun Shen. Algorithm for Detecting Free Space in Underground Mine Tunnels for Autonomous Vehicles [J]. Automotive Engineering, 2024, 46(11): 2017-2027. |