Automotive Engineering ›› 2024, Vol. 46 ›› Issue (11): 1993-2004.doi: 10.19562/j.chinasae.qcgc.2024.11.006
Previous Articles Next Articles
Hailun Zhang,Guangwei Wang,Qingwen Meng,Qing Xu,Jianqiang Wang(),Keqiang Li
Received:
2024-04-13
Revised:
2024-05-26
Online:
2024-11-25
Published:
2024-11-22
Contact:
Jianqiang Wang
E-mail:wjqlws@tsinghua.edu.cn
Hailun Zhang,Guangwei Wang,Qingwen Meng,Qing Xu,Jianqiang Wang,Keqiang Li. An Online Semi-supervised Hybrid Approach for Vehicle Behavior Perception at Intersections[J].Automotive Engineering, 2024, 46(11): 1993-2004.
"
算法 | TL/% | TR/% | GS/% | 平均准确率/% |
---|---|---|---|---|
SVM | 76.2±3.5 | 73.1±2.7 | 74.6±3.2 | 74.8±3.5 |
HMM | 72.5±2.9 | 69.7±2.7 | 70.1±2.4 | 71.7±3.8 |
HMM-BF | 80.4±4.5 | 78.6±3.7 | 78.4±2.4 | 79.2±5.7 |
NB | 78.2±3.3 | 77.2±3.5 | 76.4±4.1 | 77.5±4.5 |
K-NN | 76.6±2.5 | 72.5±3.2 | 73.4±6.2 | 75.0±1.5 |
LSTM-50 | 62.0±1.9 | 59.2±2.9 | 58.4±2.1 | 59.5±3.5 |
LSTM-int | 83.5±4.3 | 81.4±3.1 | 81.9±2.8 | 82.4±4.3 |
SSL-K-NN | 78.6±4.2 | 76.1±3.7 | 76.9±3.5 | 77.5±4.4 |
EL-SSL-10 | 84.1±4.2 | 79.4±5.7 | 82.1±4.6 | 81.2±5.7 |
EL-SSL-30 | 85.8±3.4 | 81.4±5.2 | 82.9±4.3 | 83.8±1.4 |
EL-SSL-50 | 86.8±5.3 | 84.5±2.8 | 85.1±2.7 | 85.9±3.4 |
"
算法 | TL/% | TR/% | GS/% | 平均准确率/% |
---|---|---|---|---|
SVM | 85.7±2.4 | 79.3±2.1 | 80.9±3.2 | 82.1±3.6 |
HMM | 78.8±3.1 | 76.0±3.2 | 75.4±3.2 | 76.8±4.8 |
HMM-BF | 85.5±4.7 | 83.2±4.3 | 82.4±2.4 | 84.1±3.6 |
NB | 85.1±3.1 | 84.4±3.0 | 84.0±3.2 | 84.9±4.0 |
K-NN | 86.0±3.3 | 85.7±3.5 | 84.2±2.1 | 84.9±1.8 |
LSTM-50 | 63.4±5.2 | 61.4±2.7 | 64.1±4.1 | 63.2±2.9 |
LSTM-int | 89.9±2.9 | 87.4±2.7 | 88.0±3.0 | 88.9±2.4 |
SSL-K-NN | 87.3±1.5 | 83.5±1.7 | 83.4±3.6 | 84.9±2.8 |
EL-SSL-10 | 91.2±4.6 | 86.3±3.2 | 86.9±2.2 | 88.6±2.1 |
EL-SSL-30 | 93.2±3.5 | 88.9±4.5 | 89.1±3.6 | 91.2±2.5 |
EL-OSS-50 | 93.9±1.2 | 91.0±2.5 | 90.1±1.1 | 92.1±2.9 |
"
算法 | TL/% | TR/% | GS/% | 平均准确率/% |
---|---|---|---|---|
SVM | 88.2±2.1 | 86.2±1.9 | 86.0±1.8 | 87.1±4.2 |
HMM | 84.3±2.2 | 82.5±4.1 | 81.3±4.4 | 83.8±3.5 |
HMM-BF | 88.3±2.5 | 86.7±3.2 | 87.4±3.4 | 87.8±3.1 |
NB | 88.1±4.3 | 87.6±4.5 | 86.9±1.5 | 87.5±2.3 |
K-NN | 88.9±2.5 | 87.6±1.7 | 87.7±1.9 | 88.5±3.9 |
LSTM-50 | 71.5±6.1 | 70.2±3.5 | 69.8±4.7 | 69.8±4.5 |
LSTM-int | 94.9±3.2 | 93.4±1.5 | 93.0±3.2 | 94.3±5.1 |
SSL-K-NN | 93.4±2.0 | 90.9±3.8 | 92.7±5.2 | 92.3±3.2 |
EL-SSL-10 | 94.0±2.0 | 92.2±2.5 | 93.1±2.5 | 93.6±2.5 |
EL-SSL-30 | 96.2±2.4 | 93.5±1.9 | 95.1±1.5 | 94.9±1.1 |
EL-SSL-50 | 97.0±2.2 | 94.1±3.5 | 94.8±1.6 | 95.6±2.1 |
1 | FENG S, SUN H, YAN X, et al. Dense reinforcement learning for safety validation of autonomous vehicles[J]. Nature, 2023, 615(7953): 620-627. |
2 | SCHNEIDER J, MEADOWS G, MATHISON S R, et al. Validation and sensitivity studies for SAE J2601, the light duty vehicle hydrogen fueling standard[J]. SAE International Journal of Alternative Powertrains, 2014, 3(2): 257-309. |
3 | 田彦涛, 赵凤凯, 聂光明. 考虑驾驶习惯的驾驶员换道意图识别 [J/OL]. 吉林大学学报(工学版), 2020: 1-9. |
TIAN Y T, ZHAO F K, NIE G M. Driver's lane change intention recognition considering driving habits [J/OL]. Journal of Jilin University (Engineering and Technology Edition), 2020: 1-9. | |
4 | 刘通, 付锐, 马勇, 等. 考虑驾驶人风格的跟车预警规则研究 [J]. 中国公路学报, 2020, 33(2): 170-180. |
LIU T, FU R, MA Y, et al. Car-following warning rules considering driving styles [J]. China Journal of Highway and Transport, 2020, 33(2): 170-180. | |
5 | LI Y, LIU F, XING L, et al. A deep learning framework to explore influences of data noises on lane-changing intention prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2024. |
6 | 季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测 [J]. 中国公路学报, 2019, 32(6): 34-42. |
JI X W, FEI C, HE X K, et al. Intention recognition and trajectory prediction for vehicles using LSTM network [J]. China Journal of Highway and Transport, 2019, 32(6): 34-42. | |
7 | 郭景华, 李克强, 王进, 等. 基于危险场景聚类分析的前车随机运动状态预测研究 [J]. 汽车工程, 2020, 42(7): 847-853,859. |
GUO J H, LI K Q, WANG J, et al. Study on prediction of preceding vehicle's stochastic motion based on risk scenarios clustering analysis [J]. Automotive Engineering, 2020, 42(7): 847-853,859. | |
8 | 付锐, 张海伦, 刘文晓, 等. 驾驶人意图识别综述[J].长安大学学报(自然科学版),2022,42(1): 33-60. |
FU R, ZHANG H L, LIU W X, et al. Review on driver intention recognition [J]. Journal of Chang’an University (Natural Science Edition), 2022,42(1): 33-60. | |
9 | 张海伦, 付锐, 袁伟, 等. 面向前车的驾驶行为感知与意图识别算法研究 [J]. 中国公路学报, 2022, 35 (6): 299-311. |
ZHANG H L, FU R, YUAN W, et al. Research on algorithms of driving behavior perception and intention recognition oriented to the vehicle front [J]. China Journal of Highway and Transport, 2022, 35 (6): 299-311. | |
10 | BOCKLISCH F, BOCKLISCH S F, BEGGIATO M, et al. Adaptive fuzzy pattern classification for the online detection of driver lane change intention[J]. Neurocomputing, 2017, 262: 148-158. |
11 | ZHANG M, FU R, MORRIS D D, et al. A framework for turning behavior classification at intersections using 3D LIDAR[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7431-7442. |
12 | ZYNER A, WORRALL S, NEBOT E. Naturalistic driver intention and path prediction using recurrent neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(4): 1584-1594. |
13 | LEFÈVRE S, VASQUEZ D, LAUGIER C. A survey on motion prediction and risk assessment for intelligent vehicles[J]. ROBOMECH Journal, 2014, 1(1): 1-14. |
14 | ZHANG H, FU R, WANG C, et al. Turning maneuver prediction of connected vehicles at signalized intersections: a dictionary learning-based approach[J]. IEEE Internet of Things Journal, 2022, 9(22): 23142-23159. |
15 | 张一鸣, 周兵, 吴晓建, 等. 基于前车轨迹预测的高速智能车运动规划 [J]. 汽车工程, 2020, 42(5): 574-580,587. |
ZHANG Y M, ZHOU B, WU X J, et al. Motion planning of high-speed intelligent vehicle based on front vehicle trajectory prediction [J]. Automotive Engineering, 2020, 42(5): 574-580,587. | |
16 | TOLEDO-MOREO R, ZAMORA-IZQUIERDO M A. IMM-based lane-change prediction in highways with low-cost GPS/INS[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(1): 180-185. |
17 | WU C, PENG L, HUANG Z, et al. A method of vehicle motion prediction and collision risk assessment with a simulated vehicular cyber physical system [J]. Transportation Research Part C: Emerging Technologies, 2014, 47:179-191. |
18 | 谢枫, 娄静涛, 赵凯, 等. 基于行为识别和曲率约束的车辆轨迹预测方法研究 [J]. 汽车工程, 2019, 41(9): 1036-1042. |
XIE L, LOU J T, ZHAO K, et al. A research on vehicle trajectory prediction method based on behavior recognition and curvature constraints [J]. Automotive Engineering, 2019, 41(9): 1036-1042. | |
19 | 刘创, 梁军. 基于注意力机制的车辆运动轨迹预测 [J]. 浙江大学学报(工学版), 2020, 54(6): 1156-1163. |
LIU C, LIANG J. Vehicle motion trajectory prediction based on attention mechanism [J]. Journal of Zhejiang University (Engineering Science), 2020, 54(6): 1156-1163. | |
20 | 张涛, 邹渊, 张旭东, 等. 网联车辆并线预测与巡航控制的研究 [J]. 汽车工程, 2020, 42(2): 250-256. |
ZHANG T, ZHOU Y, ZHANG X D, et al. Research on merging prediction and cruise control for connected vehicles [J]. Automotive Engineering, 2020, 42(2): 250-256. | |
21 | SUN J, QI X, XU Y, et al. Vehicle turning behavior modeling at conflicting areas of mixed-flow intersections based on deep learning [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3674-3685. |
22 | XING Y, LV C, CAO D. Personalized vehicle trajectory prediction based on joint time-series modeling for connected vehicles [J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1341-1352. |
23 | ZHANG M, FU R, MORRIS D D, et al. A framework for turning behavior classification at intersections using 3D LIDAR [J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7431-7442. |
24 | GADEPALLY V, KRISHNAMURTHY A, OZGUNER U. A framework for estimating driver decisions near intersections [J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 637-646. |
25 | 易丹辉, 王燕. 应用时间序列分析 [M]. 5版.北京:中国人民大学出版社, 2019. |
YI D H, WANG Y. Applied time series analysis[M]. 5 th ed. Beijing: China Renmin University Press, 2019. | |
26 | HAZAN E, AGARWAL A, KALE S. Logarithmic regret algorithms for online convex optimization[J]. Machine Learning, 2007, 69(2-3): 169-192. |
27 | ZINKEVICH M. Online convex programming and generalized infinitesimal gradient ascent [C]. Proceedings of the 20th International Conference on Machine Learning (ICML-03),2003: 928-936. |
28 | ANAVA O, HAZAN E, MANNOR S, et al. Online learning for time series prediction[C].Conference on Learning Theory, 2013: 172-184. |
29 | SHAO J, TAN Y, GAO L, et al. Synchronization-based clustering on evolving data stream [J]. Information Sciences, 2019, 501: 573-587. |
[1] | Daofei Li,Hao Pan. Application of Scenario Complexity Evaluation in Trajectory Prediction and Automated Driving Decision-Making [J]. Automotive Engineering, 2024, 46(9): 1556-1563. |
[2] | Hai Wang,Jianguo Li,Yingfeng Cai,Long Chen. A LiDAR-Based Dynamic Driving Scene Multi-task Segmentation Network [J]. Automotive Engineering, 2024, 46(9): 1608-1616. |
[3] | Jianan Zhang,Zhaozheng Hu,Jie Meng,Huahua Hu,Jie Zuo. Distributed Simulation Platform Architecture and Application of Autonomous Driving for Vehicle-Road-Map Collaboration [J]. Automotive Engineering, 2024, 46(8): 1335-1345. |
[4] | Le Tao,Hai Wang,Yingfeng Cai,Long Chen. Multi-object Detection Algorithm Based on Point Cloud for Autonomous Driving Scenarios [J]. Automotive Engineering, 2024, 46(7): 1208-1218. |
[5] | Linhui Li,Yifan Fu,Ting Wang,Xuecheng Wang,Jing Lian. Trajectory Prediction Method Enhanced by Self-supervised Pretraining [J]. Automotive Engineering, 2024, 46(7): 1219-1227. |
[6] | Hai Wang,Yuxuan Ding,Tong Luo,Meng Qiu,Yingfeng Cai,Long Chen. A Multi-class Multi-target Tracking Algorithm Combining Motion Speed and Appearance Features in Driving Scenarios [J]. Automotive Engineering, 2024, 46(6): 956-964. |
[7] | Jing Huang,Xiangzhen Liu,Xiaoyang Deng,Ran Chen. Research on Intelligent Vehicle Trajectory Planning Based on Multimodal Trajectory Prediction [J]. Automotive Engineering, 2024, 46(6): 965-974. |
[8] | Mengfan Li,Zhongxiang Feng,Weihua Zhang,Jingyu Li. Study on Driver's Visual Transfer Characteristics During the Takeover Process of Human-Computer Co-driving Mode [J]. Automotive Engineering, 2024, 46(5): 795-804. |
[9] | Fuxing Yao,Chao Sun,Yungang Lan,Bing Lu,Bo Wang,Haiyang Yu. A Lane Change Decision Method for Intelligent Connected Vehicles Based on Mixture of Expert Model [J]. Automotive Engineering, 2024, 46(5): 882-892. |
[10] | Ting Chikit,Yafei Wang,Yichen Zhang,Mingyu Wu,Yile Wang. Energy-Saving Planning Method for Autonomous Driving Mining Trucks Based on Composite Dynamic Sampling [J]. Automotive Engineering, 2024, 46(4): 588-595. |
[11] | Yiwei Zhou,Mo Xia,Bing Zhu. Multimodal Vehicle Trajectory Prediction Methods Considering Multiple Traffic Participants in Urban Road Scenarios [J]. Automotive Engineering, 2024, 46(3): 396-406. |
[12] | Xiaocong Zhao,Shiyu Fang,Zirui Li,Jian Sun. Extraction and Application of Key Utility Term for Social Driving Interaction [J]. Automotive Engineering, 2024, 46(2): 230-240. |
[13] | Xiaolin Tang,Lu Gan,Guofa Li,Keqiang Li,Wenbo Chu. Large Model Alignment Technology for Autonomous Driving: A Review [J]. Automotive Engineering, 2024, 46(11): 1937-1951. |
[14] | Song Gao,Jianglin Zhou,Bolin Gao,Jian Lu,He Wang,Yueyun Xu. Pedestrian Trajectory Prediction Method Based on Multi-information Fusion Network [J]. Automotive Engineering, 2024, 46(11): 1973-1982. |
[15] | Zhijun Chen,Chaowei Wang,Chaozhong Wu,Chuang Qian,Huaizhu Wu,Guangjun Shen. Algorithm for Detecting Free Space in Underground Mine Tunnels for Autonomous Vehicles [J]. Automotive Engineering, 2024, 46(11): 2017-2027. |