汽车工程 ›› 2019, Vol. 41 ›› Issue (2): 232-238.doi: 10.19562/j.chinasae.qcgc.2019.02.017

• • 上一篇    

CFRP十二直角薄壁梁保险杠的轻量化设计*

陈光1, 路深1, 赵紫剑2, 陈超3, 娄磊3   

  1. 1.河北工业大学机械工程学院,天津 300131;
    2.中国第一汽车集团有限公司研发总院,长春 130000;
    3.中国汽车技术研究中心国家轿车质量监督检测中心,天津 300300
  • 收稿日期:2017-10-25 出版日期:2019-02-25 发布日期:2019-02-25
  • 通讯作者: 路深,硕士研究生,E-mail:18222149985@163.com
  • 基金资助:
    河北省重点研发计划项目(17212203D)和河北省高等学校科学技术研究项目(QN201688)资助

Lightweight Design of CFRP Thin-walled Beam Bumper with Twelve Right-angle Section

Chen Guang1, Lu Shen1, Zhao Zijian2, Chen Chao3, Lou Lei3   

  1. 1.School of Mechanical Engineering, Hebei University of Technology, Tianjin 300131;
    2.General R&D Institute,China FAW Group Co., Ltd., Changchun 130000;
    3.National Passenger Car Quality Supervision and Inspection Center, China Automotive Technology and Research Center, Tianjin 300300
  • Received:2017-10-25 Online:2019-02-25 Published:2019-02-25

摘要: 针对某B级轿车保险杠总成轻量化改进设计,基于碰撞能量管理的方法,确定了保险杠吸能目标,采用正向设计的方法进行详细尺寸设计。吸能盒采用外层为碳纤维增强复合材料(CFRP)、内层为低碳钢板的十二直角薄壁梁结构,根据薄壁梁压溃理论,分别确定两层材料厚度理论值。横梁采用单层CFRP材料的十二直角薄壁梁结构,以刚度等效替代方法,确定横梁厚度理论值。以厚度理论值为基础,设计一系列对比方案,最终通过高、低速碰撞验证选出合理方案,在保证吸能要求的前提下,使保险杠总成质量减轻41.5%。

关键词: 保险杠, 碰撞能量吸收, 轻量化, CFRP, 十二直角薄壁梁

Abstract: Aiming at the light-weight modification design of the bumper assembly of a B-class car, its energy absorption target is determined based on crash energy management method and the detailed dimension design is conducted with forward design scheme. The energy-absorbing box adopts a two-layer twelve-right-angle-section thin-walled beam structure with an outer layer of carbon fiber reinforced polymer and an inner layer of low-carbon steel sheet, and its theoretical thickness values of both layers are determined based on the collapse theory for thin-walled beam. The bumper beam uses the same twelve-right-angle-section thin-walled beam structure but with single layer and its theoretical thickness value is determined by using equivalent stiffness substitution method. A series of comparison schemes are designed based on theoretical thickness values and a reasonable scheme is finally selected through high-speed and low-speed crash verifications, achieving a mass reduction rate of 41.5% for bumper assembly while meeting the requirements of energy absorption

Key words: bumper, crash energy absorption, lightweighting, CFRP, twelve right-angle section thin-walled beam