汽车工程 ›› 2022, Vol. 44 ›› Issue (8): 1183-1198.doi: 10.19562/j.chinasae.qcgc.2022.08.008
所属专题: 新能源汽车技术-动力电池&燃料电池2022年
李航1,胡尊严1(),胡家毅1,董家臣1,李建秋1(
),徐梁飞1,欧阳明高1,卜玉2,王力军3,秦志东3
收稿日期:
2022-02-11
修回日期:
2022-03-28
出版日期:
2022-08-25
发布日期:
2022-08-25
通讯作者:
胡尊严,李建秋
E-mail:huzunyan@tsinghua.edu.cn;lijianqiu@tsinghua.edu.cn
基金资助:
Hang Li1,Zunyan Hu1(),Jiayi Hu1,Jiachen Dong1,Jianqiu Li1(
),Liangfei Xu1,Ouyang Minggao1,Yu Bu2,Lijun Wang3,Zhidong Qin3
Received:
2022-02-11
Revised:
2022-03-28
Online:
2022-08-25
Published:
2022-08-25
Contact:
Zunyan Hu,Jianqiu Li
E-mail:huzunyan@tsinghua.edu.cn;lijianqiu@tsinghua.edu.cn
摘要:
根据重型商用车动力系统高性能、长续航里程、低成本的开发需求,本文提出了分布式驱动液氢燃料电池重型商用车技术方案,探索性地应用了大功率燃料电池系统、大容量车载液氢储供系统和分布式电动轮驱动系统等多项创新技术。基于燃料电池系统设计与匹配技术,开发了国内首套上公告的百千瓦级燃料电池系统(109 kW);.基于车载液氢储罐设计、液氢汽化器设计和车载液氢BOG处理与全系统安全监控等关键技术突破,研制了国内首套车载大容量液氢储供系统(60 kg/110 kg);基于轮毂电机磁热设计、构型设计和集成设计创新,研制了适用于重型车辆双胎并装车轮的电动轮,所开发的电动轮单轮峰值转矩16 000 N·m,短时峰值转矩超过18 000 N·m,电动轮峰值转矩密度可达60 N·m/kg。基于上述关键部件技术,完成了全球首辆分布式驱动液氢燃料电池重型商用车开发,设计续驶里程超过1 000 km,所研制的35 t级与49 t级重型商用车分别进行了道路试验,验证了液氢储氢、动力系统与分布式电驱动系统的技术可行性,为重型商用车的电动化探索了可行的方向。
李航,胡尊严,胡家毅,董家臣,李建秋,徐梁飞,欧阳明高,卜玉,王力军,秦志东. 新型分布式驱动液氢燃料电池重型商用车设计、分析与验证[J]. 汽车工程, 2022, 44(8): 1183-1198.
Hang Li,Zunyan Hu,Jiayi Hu,Jiachen Dong,Jianqiu Li,Liangfei Xu,Ouyang Minggao,Yu Bu,Lijun Wang,Zhidong Qin. Design, Analysis and Validation of Novel Distributed Drive Liquid Hydrogen Fuel Cell Heavy Commercial Vehicles[J]. Automotive Engineering, 2022, 44(8): 1183-1198.
1 | 戴家权,彭天铎,韩冰,等.“双碳”目标下中国交通部门低碳转型路径及对石油需求的影响研究[J].国际石油经济,2021,29(12):1-9. |
DAI J Q, PENG T D, et al. Research on the low-carbon transformation path of China’s transportation sector and its impact on oil demand under the “dual-carbon” goal[J]. International Petroleum Economy, 2021, 29(12):1-9. | |
2 | 曹文明.燃料电池/蓄电池双能源电动汽车动力系统匹配的研究[D].重庆:重庆大学,2004. |
CAO W. Research on power system matching of fuel cell/battery dual-energy electric vehicle[D]. Chongqing:Chongqing University, 2004. | |
3 | 刘世闯,孙桓五,王瑞鑫,等.大功率型氢燃料电池重卡动力系统匹配设计[J].汽车工程,2021,43(2). |
LIU S C, SUN H W, WANG R X, et al. Matching design of power system for high power hydrogen fuel cell heavy‑duty truck[J]. Automotive Engineering, 2021,43(2). | |
4 | 谭旭光,余卓平.燃料电池商用车产业发展现状与展望[J].中国工程科学,2020,22(5):152-158. |
TAN X G, YU Z P. Development status and prospects of fuel cell commercial vehicle industry[J]. Strategic Study of CAE, 2020, 22(5):152-158. | |
5 | BARICCO M, BANG M, FICHTNER M, et al. Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2017, 342:853-860. |
6 | LIU S, LIU J, LIU X, et al. Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature[J]. Nature Nanotechnology, 2021:1-6. |
7 | LUO Y, CAO K, DAI Y, et al. A novel hierarchical global chassis control system for distributed electric vehicles[J]. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 2014, 7(2):313-327. |
8 | 徐威,张若平.电动汽车传动方案的选择[J].汽车工程师,2014(8):54-56. |
XU W, ZHANG R P. Study on electric vehicle drive mode[J]. Auto Engineer, 2014(8):54-56. | |
9 | 魏跃远,詹文章,林逸.燃料电池混合动力汽车动力系统匹配与优化研究[J].汽车工程,2008,30(10):918-922,933. |
WEI Y Y, ZHAN W Z, LIN Y. Study on the matching and optimization of FCHEV powertrain[J]. Automotive Engineering, 2008,30(10):918-922,933. | |
10 | 李奇,孟翔,陈维荣,等.燃料电池混合动力系统参数匹配与多目标优化[J].西南交通大学学报,2019,54(5):1079-1086. |
LI Q, MENG X, CHEN W R, et al. Parameter matching and multi-objective optimization of fuel cell hybrid system[J]. Journal of Southwest Jiaotong University, 2019, 54(5):1079-1086. | |
11 | XU L, MUELLER C D, LI J, et al. Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles[J]. Applied Energy, 2015, 157(1): 664-674. |
12 | 黄英英,文雪峰.燃料电池汽车动力系统匹配方法研究[J].重型汽车,2021(3):13-14. |
HUANG Y Y, WEN X F. Research on matching method of fuel cell vehicle power system[J]. Heavy Trucks, 2021(3):13-14. | |
13 | 李新波,潘增友.我国新能源卡车全生命周期成本费用分析[J].商用汽车,2017(8):62-63. |
LI X B, PAN Z Y. Analysis of the TCO of domestic new energy vehicle[J]. Commercial Vehicle, 2017(8):62-63. | |
14 | KEBEDE A B, WORKU G B. A research on regenerative braking energy recovery: a case of Addis Ababa light rail transit[J]. eTransportation, 2021, 8(2):100117. |
15 | LIU J, WANG Z, HOU Y, et al. Data-driven energy management and velocity prediction for four-wheel-independent-driving electric vehicles[J]. eTransportation, 2021, 9(1):100119. |
16 | 陈柯序,李海波,赵小娟,等.基于BP神经网络的纯电动汽车动力传动系统效率建模及分析[J].机械设计与研究, 2021, 37(5):180-185. |
CHEN K X, LI H B, ZHAO X J, et al. Efficiency modeling and analysis of pure electric vehicle powertrain system based on BP neural network[J]. Machine Design & Research, 2021, 37(5):180-185. | |
17 | 熊忠恕.电动汽车驱动方式比较[J].汽车与驾驶维修, 2018(7):178. |
XIONG Z S. Comparison of electric vehicle driving methods[J]. Auto Driving & Service, 2018(7):178. | |
18 | 周谧,卢利霞.纯电动汽车与传统燃油汽车的生命周期成本评估[J].财会月刊, 2018(19):62-68. |
ZHOU M, LU L X. Life cycle cost assessment of pure electric vehicles and traditional fuel vehicles[J]. Finance and Accounting Monthly, 2018(19):62-68. | |
19 | 单彤文.中国LNG产业链核心技术发展现状与关键技术发展方向[J].中国海上油气,2020,32(4):190-196. |
SHAN T W. Core technology development status and key technology development trends of LNG industry chain in China[J]. China Offshore Oil and Gas, 2020, 32(4):190-196. | |
20 | ZHANG Z J, FANG W, MA R. Brief review of batteries for XEV applications[J]. eTransportation, 2019, 10(2) :100032. |
21 | 马秋香,覃记荣,辛伟伟,等.燃料电池商用车混合动力系统匹配设计[J].装备制造技术,2020(3):10-13,18. |
MA Q X, QIN J R, XIN W W, et al. Design of fuel cell commercial vehicle hybrid power system[J]. Equipment Manufacturing Technology, 2020(3): 10-13,18. | |
22 | 余志生.汽车理论[M].北京:机械工业出版社,2009. |
YU Z S. Automobile theory[M]. Beijing: China Machine Press, 2009. | |
23 | ZHITKOVA S, FELDEN M, FRANCK D, et al. Design of an electrical motor with wide speed range for the in-wheel drive in a heavy duty off-road vehicle[C]. International Conference on Electrical Machines. IEEE, 2014. |
24 | HU J Y, YAN K H, LI J Q, et al. Performance analysis of multi-axle independent-drive heavy-duty fuel cell vehicle[C]. IEEE Vehicle Power & Propulsion Conference. IEEE, 2021. |
25 | HU J Y, LI J Q, HU Z Y, et al. Energy-efficient torque-allocation strategy for a 6×6 vehicle using electric wheels[J]. eTransportation, 2021, 10:100136. |
26 | HU J Y, LI J Q, HU Z Y, et al. The cruising range analysis of heavy-duty fuel cell vehicles with liquid hydrogen storage and supply systems based on dynamic programming[C]. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). IEEE, 2021: 1-7. |
27 | SUGIMOTO S, KORI D. Study of cooling performance and losses evaluation for water- and oil-cooled motor[J]. IEEJ Transactions on Industry Applications, 2018, 138(5):378-383. |
28 | 李东和. 车用油冷电机温度场分析[J]. 微特电机,2016,44(7):4. |
LI D H. Analysis on temperature field of oil-cooled motor used in vehicles[J]. Small & Special Electrical Machines, 2016, 44(7):4. | |
29 | 李建秋,胡家毅,蔡炳坤,等. 一种隔离电机定子、转子所在空间的油冷电机:CN109194037B[P].2021-06-01. |
LI J Q, HU J Y, et al. An oil-cooled motor that isolates the space where the motor stator and rotor are located:CN109194037B[P]. 2021-06-01. | |
30 | 汤勇,孙亚隆,等.电机散热系统的研究现状与发展趋势[J].中国机械工程,2021,32(10):1135-1150. |
TANG Y, SUN Y L, et al. Development status and perspective trend of motor cooling systems[J]. China Mechanical Engineering, 2021, 32(10):1135-1150. | |
31 | 李建秋,胡家毅,刘树成,等. 一种重载电动轮:CN211969079U[P]. 2020-11-20. |
LI J Q, HU J Y, et al. A heavy-duty electric wheel:CN211969079U[P]. 2020-11-20. | |
32 | 李建秋,胡家毅,蔡炳坤,等. 一种适用于双胎并装车轮的电动轮总成、车桥及车辆:CN109130839B[P]. 2020-06-30. |
LI J Q, HU J Y, et al. An electric wheel assembly suitable for twin tires:CN109130839B[P]. 2020-06-30. | |
33 | 宋文生, 李磊, 王宇新. 燃料电池汽车氢源[J].汽车工程,2003, 25(4). |
SONG W S, LI L, WANG Y X. Fuel cell vehicle hydrogen source [J]. Automotive Engineering, 2003, 25(4). | |
34 | 王冰,侍崇诗,黄明宇,等.燃料电池供氢系统的研究进展[J].现代化工,2018,38(1):35-39,41. |
WANG B, SHI C S, HUANG Y M, et al. Research progress of fuel cell hydrogen supply system[J]. Modern Chemical Industry, 2018, 38(1):35-39,41. | |
35 | 曹军文,覃祥富,耿嘎,等.氢气储运技术的发展现状与展望[J].石油学报(石油加工),2021,37(6). |
CAO J W, XUN X F, et al. Current status and prospects of hydrogen storage and transportation technology[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2021, 37(6). | |
36 | 李帅.“航天101所”的氢能新局[J].能源,2020(1):67-68. |
LI S. The new hydrogen energy bureau of “101”[J]. Energy, 2020(1):67-68. | |
37 | BARTHÉLÉMY H, WEBER M, BARBIER F. Hydrogen storage: recent improvements and industrial perspectives[J]. International Journal of Hydrogen Energy, 2017, 42(11):7254-7262. |
[1] | 郝旭,陆贤涛,杨静,郑亚莉,王贺武. 中国零碳商用车市场渗透率建模:以重型长途牵引货车为例[J]. 汽车工程, 2024, 46(2): 253-259. |
[2] | 李琴,汤建明,张博远,陈勇,王勇. 分布式驱动电动汽车多执行器容错控制研究[J]. 汽车工程, 2023, 45(12): 2251-2259. |
[3] | 张硕,蔡旭,张春梅,兰利波,张溆祺,陈轶嵩. 氢燃料电池重型商用车全生命周期评价研究及不确定性分析[J]. 汽车工程, 2023, 45(12): 2366-2386. |
[4] | 宋强,王冠峰,商赫,张念忠. 基于多参数控制的分布式驱动电动汽车操纵稳定性控制策略研究[J]. 汽车工程, 2023, 45(11): 2104-2112. |
[5] | 王军年,张春林,赵梦圆,强越,郭大畅,杨钫. 轮毂电机两挡变速器协同无动力中断换挡控制[J]. 汽车工程, 2023, 45(10): 1885-1896. |
[6] | 黄文凯,程辉军,储爱华. 纯电重型商用车四电机系统动力性及经济性研究[J]. 汽车工程, 2023, 45(1): 70-76. |
[7] | 林程,梁晟,宫新乐,于潇,汪博文. 面向极限工况的分布式驱动电动汽车动力学集成控制方法[J]. 汽车工程, 2022, 44(9): 1372-1385. |
[8] | 李军求,刘吉威,朱超峰. 基于时变底盘构型的混动车辆能量管理研究[J]. 汽车工程, 2022, 44(12): 1866-1876. |
[9] | 钟龙飞,彭育辉,江铭. 基于相平面的分布式驱动电动汽车稳定性控制[J]. 汽车工程, 2021, 43(5): 721-729. |
[10] | 彭博, 李军求, 孙逢春, 朱学斌, 万存才. 多轴分布式电驱动车辆后桥差动转向控制策略研究*[J]. 汽车工程, 2020, 42(7): 909-916. |
[11] | 刘志强, 刘广. 分布式驱动电动汽车稳定性控制仿真与试验[J]. 汽车工程, 2019, 41(7): 792-799. |
[12] | 杜荣华,米思雨,胡林,孟灿. 分布式驱动电动汽车复合制动系统转矩分配控制策略仿真*[J]. 汽车工程, 2019, 41(3): 327-333. |
[13] | 耿国庆,韦斌源,江浩斌,华一丁,吴镇. 基于NA-EKF的分布式驱动电动汽车行驶状态估计研究[J]. 汽车工程, 2018, 40(7): 770-. |
[14] | 徐涛,申焱华,张文明,谢锦程. 分布驱动轮式车辆差动转向动力学特性研究[J]. 汽车工程, 2018, 40(7): 812-. |
|