汽车工程 ›› 2023, Vol. 45 ›› Issue (12): 2366-2386.doi: 10.19562/j.chinasae.qcgc.2023.12.019

所属专题: 新能源汽车技术-动力电池&燃料电池2023年

• • 上一篇    

氢燃料电池重型商用车全生命周期评价研究及不确定性分析

张硕1,蔡旭1,张春梅1,兰利波1,张溆祺2,陈轶嵩1()   

  1. 1.长安大学汽车学院,西安 710064
    2.长安大学长安都柏林国际交通学院,西安 710064
  • 收稿日期:2023-05-05 修回日期:2023-06-15 出版日期:2023-12-25 发布日期:2023-12-21
  • 通讯作者: 陈轶嵩 E-mail:chenyisong_1988@163.com
  • 基金资助:
    国家重点研发计划项目(2021YFEO192900);陕西省重点研发计划项目(2021LLRH-04-04-02);陕西省重点产业创新链项目(2020ZDL-GY16-08);陕西省创新人才推进计划-青年科技新星项目(2021KJXX-15);一汽-大众中华环境保护基金会汽车环保创新引领计划项目(220222220522);长安大学中央高校基本科研业务费专项资金(300102223207)

Life Cycle Assessment Research and Uncertainty Analysis of Hydrogen Fuel Cell Heavy-Duty Commercial Vehicles

Shuo Zhang1,Xu Cai1,Chunmei Zhang1,Libo Lan1,Xuqi Zhang2,Yisong Chen1()   

  1. 1.School of Automobile,Chang’an University,Xi’an  710064
    2.Chang’an Dublin International College of Transportation,Chang’an University,Xi’an  710064
  • Received:2023-05-05 Revised:2023-06-15 Online:2023-12-25 Published:2023-12-21
  • Contact: Yisong Chen E-mail:chenyisong_1988@163.com

摘要:

氢燃料电池重型商用车(FCHCV)是应对能源安全和温室效应等问题的理想解决方案之一,但目前在关键参数情景模拟下的FCHCV全生命周期能耗和排放尚不清晰。以国内某款FCHCV为评价对象,基于全生命周期评价方法,重点分析煤气化、甲烷重整、混合电力电解水和光伏电解水制氢4种氢能路径下FCHCV全生命周期能耗和排放结果,并对燃料电池电堆衰退、百公里氢耗量和车辆寿命里程进行不确定性分析。研究发现,基于光伏电解水制氢的FCHCV全生命周期能耗和碳排放最低。提高燃油经济性和车辆寿命里程,延缓燃料电池电堆衰退,可有效改善FCHCV全生命周期环境影响。

关键词: 氢燃料电池, 重型商用车, 全生命周期评价, 燃料电池衰退, 不确定性分析

Abstract:

The hydrogen fuel cell heavy-duty commercial vehicle (FCHCV) is one of the ideal solutions to address energy security and greenhouse gas emissions. However, the full life cycle energy consumption and emissions of FCHCVs under key parameter scenario simulations are still unclear. This study evaluates a domestic FCHCV based on the life cycle assessment method, with a focus on analyzing the life cycle energy consumption and emissions results of FCHCV under four hydrogen production paths, which are coal gasification, methane reforming, mixed power electrolysis, and photovoltaic electrolysis. Uncertainty analyses are conducted on the fuel cell stack degradation, hydrogen consumption per hundred kilometers, and vehicle lifespan. The results show that the FCHCV using photovoltaic electrolysis has the lowest life cycle energy consumption and carbon emissions. Improving fuel economy and vehicle lifespan, and delaying fuel cell stack degradation can effectively improve the environmental impact of FCHCV during the life cycle.

Key words: hydrogen fuel cell, heavy-duty commercial vehicles, life cycle assessment, fuel cell degradation, uncertainty analysis