汽车工程 ›› 2023, Vol. 45 ›› Issue (12): 2366-2386.doi: 10.19562/j.chinasae.qcgc.2023.12.019
所属专题: 新能源汽车技术-动力电池&燃料电池2023年
• • 上一篇
收稿日期:
2023-05-05
修回日期:
2023-06-15
出版日期:
2023-12-25
发布日期:
2023-12-21
通讯作者:
陈轶嵩
E-mail:chenyisong_1988@163.com
基金资助:
Shuo Zhang1,Xu Cai1,Chunmei Zhang1,Libo Lan1,Xuqi Zhang2,Yisong Chen1()
Received:
2023-05-05
Revised:
2023-06-15
Online:
2023-12-25
Published:
2023-12-21
Contact:
Yisong Chen
E-mail:chenyisong_1988@163.com
摘要:
氢燃料电池重型商用车(FCHCV)是应对能源安全和温室效应等问题的理想解决方案之一,但目前在关键参数情景模拟下的FCHCV全生命周期能耗和排放尚不清晰。以国内某款FCHCV为评价对象,基于全生命周期评价方法,重点分析煤气化、甲烷重整、混合电力电解水和光伏电解水制氢4种氢能路径下FCHCV全生命周期能耗和排放结果,并对燃料电池电堆衰退、百公里氢耗量和车辆寿命里程进行不确定性分析。研究发现,基于光伏电解水制氢的FCHCV全生命周期能耗和碳排放最低。提高燃油经济性和车辆寿命里程,延缓燃料电池电堆衰退,可有效改善FCHCV全生命周期环境影响。
张硕,蔡旭,张春梅,兰利波,张溆祺,陈轶嵩. 氢燃料电池重型商用车全生命周期评价研究及不确定性分析[J]. 汽车工程, 2023, 45(12): 2366-2386.
Shuo Zhang,Xu Cai,Chunmei Zhang,Libo Lan,Xuqi Zhang,Yisong Chen. Life Cycle Assessment Research and Uncertainty Analysis of Hydrogen Fuel Cell Heavy-Duty Commercial Vehicles[J]. Automotive Engineering, 2023, 45(12): 2366-2386.
表2
FCHCV数据清单[8-9,15,27-29]"
锂电池 | 车身 | 底盘 | 质子交换膜 | 储氢罐 | BOP | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
材料 | 数量 | 材料 | 数量 | 材料 | 数量 | 材料 | 数量 | 材料 | 数量 | 材料 | 数量 |
磷酸铁锂 | 128.70 kg | 钢 | 1 861.08 kg | 钢 | 3 555.36 kg | 异丙醇 | 2.27 kg | 碳纤维 | 410.40 kg | 钢 | 167.67 kg |
聚氯乙烯 | 40.95 kg | 铝 | 21.67 kg | 铸铁 | 272.16 kg | 水 | 2.27 kg | 环氧树脂 | 164.16 kg | 锻造铝 | 9.72 kg |
铝基体 | 239.85 kg | 镁 | 2.71 kg | 铝 | 43.20 kg | 电能 | 3.48 MJ | 泡沫 | 27.36 kg | 乙烯 | 19.44 kg |
石墨 | 58.50 kg | 玻璃纤维 | 178.79 kg | 铜 | 99.36 kg | 热能 | 2.15 MJ | 玻璃纤维 | 27.36 kg | 橡胶 | 7.29 kg |
聚丙烯 | 35.10 kg | 塑料 | 471.37 kg | 塑料 | 142.56 kg | 硫酸 | 1.30 kg | 铝基体 | 6.84 kg | 其他 | 2.43 kg |
聚乙烯 | 70.20 kg | 铜 | 51.47 kg | 橡胶 | 181.44 kg | 四氟乙烯 | 1.73 kg | 高强度 聚乙烯 | 47.88 kg | 高密度 聚乙烯 | 36.45 kg |
其他 | 11.70 kg | 其他 | 121.91 kg | 其他 | 25.92 kg | 聚乙烯 | 4.15 kg | ||||
催化层 | 电机和电控 | 气体扩散层 | 双极板 | 端板 | 冷却垫片 | ||||||
材料 | 数量 | 材料 | 数量 | 材料 | 数量 | 材料 | 数量 | 材料 | 数量 | 材料 | 数量 |
Pt/C1 | 0.23 kg | 铜 | 14.40 kg | 石墨 | 16.82 kg | 石墨 | 163.67 kg | 铝 | 24.68 kg | 橡胶 | 42.59 kg |
碳黑 | 0.35 kg | 钢 | 71.10 kg | 碳纤维3 | 302.70 kg | 电能 | 5 143.82 MJ | ||||
电能 | 3437.08 MJ | 钕铁硼2 | 0.90 kg | 电能 | 1204.06 MJ | 醋酸 乙烯酯 | 70.14 kg | ||||
水 | 0.23 kg | 铝合金 | 3.60 kg | 聚四氟 乙烯4 | 33.63 kg | ||||||
甲醇 | 0.23 kg | 钢 | 24.68 kg | 电能 | 5.54 MJ | ||||||
Nafion DE-521 | 2.80 kg |
表4
4种氢能路径下1 kg氢气的生命周期能耗、碳排放和污染物排放量[14,26-27]"
路径 | ADP(f)/MJ | GWP/kg | AP/kg | EP/kg | POCP/kg | HTP/kg |
---|---|---|---|---|---|---|
煤气化+高压气氢 | 3.31E+02 | 2.75E+01 | 1.66E-02 | 8.26E-04 | 4.78E-03 | 8.30E-03 |
甲烷重整+高压气氢 | 3.98E+02 | 2.03E+01 | 2.46E-02 | 1.55E-03 | 4.98E-03 | 1.20E-02 |
混合电力电解水+高压气氢 | 4.09E+02 | 3.47E+01 | 7.66E-02 | 9.75E-03 | 8.28E-03 | 3.30E-02 |
光伏电解水+高压气氢 | 1.52E+02 | 3.21E+00 | 1.26E-02 | 9.26E-04 | 4.13E-03 | 1.00E-04 |
表9
基于不同氢能路径的FCHCV的全生命周期污染物排放结果 kg"
污染物排放指标 | 阶段 | 煤气化 | 甲烷重整 | 混合电力电解水 | 光伏电解水 |
---|---|---|---|---|---|
AP | I | 1.72E+02 | 1.72E+02 | 1.72E+02 | 1.72E+02 |
II | 5.65E+01 | 5.65E+01 | 5.65E+01 | 5.65E+01 | |
III | 9.90E+02 | 1.47E+03 | 4.57E+03 | 7.51E+02 | |
IV | -6.21E+01 | -6.21E+01 | -6.21E+01 | -6.21E+01 | |
总计 | 1.16E+03 | 1.63E+03 | 4.73E+03 | 9.17E+02 | |
EP | I | 1.64E+01 | 1.64E+01 | 1.64E+01 | 1.64E+01 |
II | 7.53E+00 | 7.53E+00 | 7.53E+00 | 7.53E+00 | |
III | 4.93E+01 | 9.24E+01 | 5.81E+02 | 5.52E+01 | |
IV | -4.83E+00 | -4.83E+00 | -4.83E+00 | -4.83E+00 | |
总计 | 6.84E+01 | 1.12E+02 | 6.01E+02 | 7.43E+01 | |
POCP | I | 1.52E+01 | 1.52E+01 | 1.52E+01 | 1.52E+01 |
II | 3.80E+00 | 3.80E+00 | 3.80E+00 | 3.80E+00 | |
III | 2.85E+02 | 2.97E+02 | 4.94E+02 | 2.46E+02 | |
IV | -6.61E+00 | -6.61E+00 | -6.61E+00 | -6.61E+00 | |
总计 | 2.97E+02 | 3.09E+02 | 5.06E+02 | 2.59E+02 | |
HTP | I | 2.45E+04 | 2.45E+04 | 2.45E+04 | 2.45E+04 |
II | 1.10E+03 | 1.10E+03 | 1.10E+03 | 1.10E+03 | |
III | 4.95E+02 | 7.16E+02 | 1.97E+03 | 5.96E+00 | |
IV | -3.99E+03 | -3.99E+03 | -3.99E+03 | -3.99E+03 | |
总计 | 2.21E+04 | 2.23E+04 | 2.36E+04 | 2.16E+04 |
1 | 刘宗巍, 史天泽, 郝瀚, 等. 中国燃料电池汽车发展问题研究[J]. 汽车技术, 2018(1):1-9. |
LIU Z W, SHI T Z, HAO H, et al. Research on main problems associated with development of fuel cell vehicle in China[J]. Automobile Technology, 2018(1):1-9. | |
2 | 谭旭光, 余卓平. 燃料电池商用车产业发展现状与展望[J]. 中国工程科学, 2020, 22(5):152-158. |
TAN X G, YU Z P. Development status and prospects of fuel cell commercial vehicle industry[J]. Strategic Study of CAE, 2020, 22(5):152-158. | |
3 | 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4):469-477. |
SHAO Z G, YI B L. Developing trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4):469-477. | |
4 | 李航, 胡尊严, 胡家毅, 等. 新型分布式驱动液氢燃料电池重型商用车设计、分析与验证[J]. 汽车工程, 2022, 44(8):1183-1198. |
LI H, HU Z Y, HU J Y, et al. Design, analysis and validation of novel distributed drive liquid hydrogen fuel cell heavy commercial vehicles[J]. Automotive Engineering, 2022, 44(8):1183-1198. | |
5 | 侯明, 邵志刚, 俞红梅, 等. 2019 年氢燃料电池研发热点回眸[J]. 科技导报, 2020, 38(1):137-150. |
HOU M, SHAO Z G, YU H M, et al. Review of hot topics on hydrogen fuel cell in 2019[J]. Science & Technology Review, 2020, 38(1):137-150. | |
6 | KANNANGARA M, BENSEBAA F, VASUDEV M. An adaptable life cycle greenhouse gas emissions assessment framework for electric, hybrid, fuel cell and conventional vehicles: effect of electricity mix, mileage, battery capacity and battery chemistry in the context of Canada[J]. Journal of Cleaner Production, 2021, 317:128394. |
7 | BAUER C, HOFER J, ALTHAUS H, et al. The environmental performance of current and future passenger vehicles: life cycle assessment based on a novel scenario analysis framework[J]. Applied Energy, 2015, 157:871-883. |
8 | EVANGELISTI S, TAGLIAFERRI C, BRETT D, et al. Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles[J]. Journal of Cleaner Production, 2017, 142:4339-4355. |
9 | SIMONS A, BAUER C. A life-cycle perspective on automotive fuel cells[J]. Applied Energy, 2015, 157:884-896. |
10 | AHMADI P, KHOSHNEVISAN A. Dynamic simulation and lifecycle assessment of hydrogen fuel cell electric vehicles considering various hydrogen production methods[J]. International Journal of Hydrogen Energy, 2022, 47(62):26758-26769. |
11 | AHMADI P, TORABI S, AFSANEH H, et al. The effects of driving patterns and PEM fuel cell degradation on the lifecycle assessment of hydrogen fuel cell vehicles[J]. International Journal of Hydrogen Energy, 2020, 45(5):3595-3608. |
12 | AHMADI P, KJEANG E. Realistic simulation of fuel economy and life cycle metrics for hydrogen fuel cell vehicles[J]. International Journal of Energy Research, 2017, 41(5):714-727. |
13 | RAEESI M, CHANGIZIAN S, AHMADI P, et al. Performance analysis of a degraded PEM fuel cell stack for hydrogen passenger vehicles based on machine learning algorithms in real driving conditions[J]. Energy Conversion and Management, 2021, 248:114793. |
14 | CHEN Y, LAN L, HAO Z, et al. Cradle-grave energy consumption, greenhouse gas and acidification emissions in current and future fuel cell vehicles: study based on five hydrogen production methods in China[J]. Energy Reports, 2022, 8:7931-7944. |
15 | 付佩, 兰利波, 陈颖, 等. 面向2035的节能与新能源汽车全生命周期碳排放预测评价[J]. 环境科学, 2023, 44(4):2365-2374. |
FU P, LAN L B, CHEN Y, et al. Life cycle prediction assessment of energy saving and new energy vehicles for 2035[J]. Environmental Science, 2023, 44(4):2365-2374. | |
16 | LIU F, ZHAO F, LIU Z, et al. The impact of fuel cell vehicle deployment on road transport greenhouse gas emissions: the China case[J]. The International of Hydrogen Energy, 2018, 43:22604-22621. |
17 | YEOW L, YAN Y, CHEAH L. Life cycle greenhouse gas emissions of alternative fuels and powertrains for medium-duty trucks: a Singapore case study[J]. Transportation Research Part D: Transport and Environment, 2022, 105:103258. |
18 | BOOTO G, AAMODT K, HANCKE R. Comparative life cycle assessment of heavy-duty drivetrains: a Norwegian study case[J]. Transportation Research Part D: Transport and Environment, 2021, 95:102836. |
19 | LEE D, ELGOWAINY A, KOTZ A, et al. Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks[J]. Journal of Power Sources, 2018, 393:217-229. |
20 | ALONSO-VILLAR A, DAVÍÐSDÓTTIR B, STEFÁNSSON H, et al. Technical, economic, and environmental feasibility of alternative fuel heavy-duty vehicles in Iceland[J]. Journal of Cleaner Production, 2022, 369:133249. |
21 | GUSTAFSSON M, SVENSSON N, EKLUND M, et al. Well-to-wheel greenhouse gas emissions of heavy-duty transports: influence of electricity carbon intensity[J]. Transportation Research Part D: Transport and Environment, 2021, 93:102757. |
22 | 涂小岳, 杨沿平, 徐建全, 等. LNG重型商用车和柴油重型商用车全生命周期环境排放差异评价[J]. 中国机械工程, 2013, 24(11):1525-1530. |
TU X Y, YANG Y P, XU J Q, et al. Evaluation of difference between LNG and diesel heavy- duty commercial vehicle's life cycle environmental emission[J]. China Mechanical Engineering, 2013, 24(11):1525-1530. | |
23 | 涂小岳, 徐建全, 陈轶嵩, 等. 液化天然气商用车与柴油商用车生命周期能耗差异评价[J]. 中国机械工程, 2013, 24(23):3211-3215. |
TU X Y, XU J Q, CHEN Y S, et al. An evaluation of differences between LNG and diesel commercial vehicle's life cycle energy consumption[J]. China Mechanical Engineering, 2013, 24(23):3211-3215. | |
24 | 彭飞, 杨沿平, 殷仁述, 等. 商用车铝合金与钢制轮辋生命周期环境影响评价对比分析[J]. 环境科学学报, 2015, 35(12):4136-4142. |
PENG F, YANG Y P, YIN R S, et al. Comparative analysis on life cycle environmental impacts assessment between aluminum alloy and steel rim of vehicle[J]. Acta Scientiae Circumstantiae, 2015, 35(12):4136-4142. | |
25 | ZHANG X, LIN Z, CRAWFORD C, et al. Techno-economic comparison of electrification for heavy-duty trucks in China by 2040[J]. Transportation Research Part D: Transport and Environment, 2022, 102:103152. |
26 | 陈轶嵩, 丁振森, 王文君, 等. 氢燃料电池汽车不同制氢方案的全生命周期评价及情景模拟研究[J]. 中国公路学报, 2019, 32(5):172-180. |
CHEN Y S, DING Z S, WANG W J, et al. Life-cycle assessment and scenario simulation of four hydrogen production schemes for hydrogen fuel cell vehicles[J]. China Journal of Highway and Transport, 2019, 32(5):172-180. | |
27 | 陈轶嵩, 兰利波, 郝卓, 等. 氢燃料电池汽车动力系统生命周期评价及关键参数对比[J]. 环境科学, 2022, 43(8):4402-4412. |
CHEN Y S, LAN L B, HAO Z, et al. Life cycle assessment and key parameter comparison of hydrogen fuel cell vehicles power systems[J]. Environmental Science, 2022, 43(8):4402-4412. | |
28 | 陈轶嵩, 丁振森, 刘佳慧, 等. 面向2020年的质子交换膜燃料电池汽车生命周期评价及预测[J]. 中国机械工程, 2018, 29(21):2546-2552. |
CHEN Y S, DING Z S, LIU J H, et al. Life cycle assessment and prediction of proton exchange membrane fuel cell vehicles for 2020[J]. China Mechanical Engineering, 2018, 29(21):2546-2552. | |
29 | 陈轶嵩, 兰利波, 杜轶群, 等. 基于全生命周期评价理论的EREV/BEV/ICEV环境效益及减碳经济性评估[J]. 环境科学学报, 2023, 43(2):516-527. |
CHEN Y S, LAN L B, DU Y Q, et al. Environmental benefit and carbon reduction economic evaluation of extended range/battery electric/internal combustion engine vehicles based on life cycle assessment[J]. Acta Scientiae Circumstantiae, 2023, 43(2):516-527. | |
30 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781):75-86. |
31 | FAN E, LI L, WANG Z, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospect[J]. Chemical Reviews, 2020, 120(14):7020-7063. |
32 | JIANG H, WANG Q, CHEN S, et al. Recycling-oriented cathode materials design for lithium-ion batteries elegant structures versus complicated compositions[J]. Energy Storage Materials, 2021, 41:380-394. |
33 | LI W, BAI H, YIN J, et al. Life cycle assessment of end-of-life vehicle recycling processes in China—take Corolla taxis for example[J]. Journal of Cleaner Production, 2016, 117:176-187. |
[1] | 吕辉,钟顺江,李振聪,曹懿莎,上官文斌,赵克刚. 基于多维子平行六面体模型的可靠性分析方法及应用[J]. 汽车工程, 2023, 45(6): 1090-1098. |
[2] | 石晨旭,杜常清,王超,李兴意,张家铭. 车用大功率燃料电池发动机进气系统控制[J]. 汽车工程, 2023, 45(11): 2148-2156. |
[3] | 黄文凯,程辉军,储爱华. 纯电重型商用车四电机系统动力性及经济性研究[J]. 汽车工程, 2023, 45(1): 70-76. |
[4] | 李航,胡尊严,胡家毅,董家臣,李建秋,徐梁飞,欧阳明高,卜玉,王力军,秦志东. 新型分布式驱动液氢燃料电池重型商用车设计、分析与验证[J]. 汽车工程, 2022, 44(8): 1183-1198. |
[5] | 刘世闯,孙桓五,王瑞鑫,李昊,张东光. 大功率型氢燃料电池重卡动力系统匹配设计[J]. 汽车工程, 2021, 43(2): 196-203. |
[6] | 张瑞亮,陈准,刘森海,范政武. 基于低通滤波的大功率型氢燃料电池重型货车 自适应能量管理策略[J]. 汽车工程, 2021, 43(11): 1693-1701. |
[7] | 吕辉, 杨坤, 尹辉, 上官文斌, 于德介. 基于多维平行六面体模型的动力总成悬置系统固有特性分析*[J]. 汽车工程, 2020, 42(4): 498-504. |
|