汽车工程 ›› 2023, Vol. 45 ›› Issue (11): 2148-2156.doi: 10.19562/j.chinasae.qcgc.2023.11.016

所属专题: 新能源汽车技术-动力电池&燃料电池2023年

• • 上一篇    下一篇

车用大功率燃料电池发动机进气系统控制

石晨旭1,杜常清1,2(),王超1,李兴意1,张家铭1   

  1. 1.现代汽车零部件技术湖北省重点实验室(武汉理工大学),武汉 430070
    2.先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室),佛山 528200
  • 收稿日期:2023-03-06 修回日期:2023-05-05 出版日期:2023-11-25 发布日期:2023-11-27
  • 通讯作者: 杜常清 E-mail:cq_du@whut.edu.cn
  • 基金资助:
    湖北省科技重大专项(2021AAA006);先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室)开放基金(XHD2020-003)

Control of Gas Supply System of High Power Fuel Cell Engine for Vehicle

Chenxu Shi1,Changqing Du1,2(),Chao Wang1,Xingyi Li1,Jiaming Zhang1   

  1. 1.Hubei Key Laboratory of Advanced Technology for Automotive Components(Wuhan University of Technology),Wuhan  430070
    2.Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Foshan  528200
  • Received:2023-03-06 Revised:2023-05-05 Online:2023-11-25 Published:2023-11-27
  • Contact: Changqing Du E-mail:cq_du@whut.edu.cn

摘要:

为满足100 kW大功率氢燃料电池发动机工作时气体供应需求,开发进气系统控制策略。首先对燃料电池电堆及进气系统进行建模,依托被控对象模型设计开发了“MAP前馈+PID反馈”的阴、阳极进气控制策略,采用单片电压状态与系统效率加权求和的方式标定阳极吹扫时间,并通过台架测试验证了该策略部署到实际控制器中的控制效果。结果显示,在稳态和瞬态工况中均实现了对压力和流量的快速响应,使得电流拉载速率提高到120和-170 A/s,阳极压力稳态和瞬态控制精度分别为98.93%和95.10%,全功率单片电压平均值为15 mV,一致性较好。基于测试数据标定搭建了阴极进气系统状态方程,开发了集成非线性扰动观测器和基于Lyapunov直接法的非线性控制器的进气方案,经MIL仿真测试显示了对空气进气控制目标的准确控制,为进一步提高控制系统响应精度提供了理论基础。

关键词: 氢燃料电池发动机, 系统建模, 进气系统控制, 台架试验, Lyapunov直接法

Abstract:

In order to meet the gas supply demand of 100 kW high power hydrogen fuel cell engine, the control strategy of supply system is developed. Firstly, the fuel cell stack and the gas supply system are modeled. Based on the controlled object model, the cathode and anode gas supply control strategy of MAP feedforward and PID feedback is designed and developed. The anode purge time is calibrated using the weighted sum of single chip voltage state and system efficiency, the control effect of which deployed in the actual controller is verified through bench test. The results show that rapid response to pressure and flow rate has been achieved in both steady-state and transient operating conditions, resulting in increase in current loading rate to 120 A/s and -170 A/s, with the steady-state and transient control accuracy of anode pressure of 98.93% and 95.10%, and the average range of full power cell voltage of 15 mV, with good consistency. Based on the test data, the state equation of the cathode air supply system is calibrated and established. An air supply scheme with integrated nonlinear disturbance observer and nonlinear controller based on Lyapunov direct method is developed. The MIL test shows that the precise control of the air supply control target is achieved, which provides a theoretical basis for further improving the response accuracy of the control system.

Key words: hydrogen fuel cell engine, system modeling, supply system control, bench test, Lyapunov method