1 |
姜枫,顾庆,郝慧珍,等.基于内容的图像分割方法综述[J].软件学报,2017,28(1):160-183.DOI:10.13328/j.cnki.jos.005136.
|
|
JIANG F, GU Q, HAO H Z, et al. Survey on content-based image segmentation methods[J]. Journal of Software, 2017, 28(1): 160-183.
|
2 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, 2015: 3431-3440.
|
3 |
GUO Y, WANG H, HU Q, et al. Deep learning for 3D point clouds: a survey[J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2020, 43(12): 4338-4364.
|
4 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015: 234-241.
|
5 |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask r-cnn[C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
|
6 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
|
7 |
SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 945-953.
|
8 |
WU B, WAN A, YUE X, et al. Squeezeseg: convolutional neural nets with recurrent crf for real-time road-object segmentation from 3D lidar point cloud[C].2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 1887-1893.
|
9 |
IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:, 2016.
|
10 |
WU B, ZHOU X, ZHAO S, et al. Squeezesegv2: improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud[C].2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 4376-4382.
|
11 |
XU C, WU B, WANG Z, et al. Squeezesegv3: spatially-adaptive convolution for efficient point-cloud segmentation[C].European Conference on Computer Vision. Springer, Cham, 2020: 1-19.
|
12 |
MILIOTO A, VIZZO I, BEHLEY J, et al. Rangenet++: fast and accurate lidar semantic segmentation[C].2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 4213-4220.
|
13 |
ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C].International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2016: 424-432.
|
14 |
TCHAPMI L, CHOY C, ARMENI I, et al. Segcloud: semantic segmentation of 3D point clouds[C].2017 International Conference on 3D Vision (3DV). IEEE, 2017: 537-547.
|
15 |
MENG H Y, GAO L, LAI Y K, et al. VV-net: voxel vae net with group convolutions for point cloud segmentation[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 8500-8508.
|
16 |
ZHOU H, ZHU X, SONG X, et al. Cylinder3D: an effective 3D framework for driving-scene lidar semantic segmentation[J]. arXiv preprint arXiv:, 2020.
|
17 |
WANG F, ZHUANG Y, GU H, et al. Octreenet: a novel sparse 3-D convolutional neural network for real-time 3-D outdoor scene analysis[J]. IEEE Transactions on Automation Science and Engineering, 2019, 17(2): 735-747.
|
18 |
QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C].Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, 2017: 652-660.
|
19 |
QI C R, YI L, SU H, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30.
|
20 |
JIANG M, WU Y, ZHAO T, et al. Pointsift: a sift-like network module for 3D point cloud semantic segmentation[J]. arXiv preprint arXiv:, 2018.
|
21 |
LI Y, BU R, SUN M, et al. Pointcnn: convolution on X-transformed points[J]. Advances in Neural Information Processing Systems, 2018, 31.
|
22 |
THOMAS H, QI C R, DESCHAUD J E, et al. Kpconv: flexible and deformable convolution for point clouds[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6411-6420.
|
23 |
LIU Z, TANG H, LIN Y, et al. Point-voxel cnn for efficient 3D deep learning[J]. Advances in Neural Information Processing Systems, 2019, 32.
|
24 |
XU J, ZHANG R, DOU J, et al. Rpvnet: a deep and efficient range-point-voxel fusion network for lidar point cloud segmentation[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 16024-16033.
|
25 |
HU Q, YANG B, XIE L, et al. Randla-net: efficient semantic segmentation of large-scale point clouds[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11108-11117.
|
26 |
ZHAO H, JIANG L, JIA J, et al. Point transformer[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 16259-16268.
|
27 |
BEHLEY J, GARBADE M, MILIOTO A, et al. Semantickitti: a dataset for semantic scene understanding of lidar sequences[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9297-9307.
|
28 |
PAN Y, GAO B, MEI J, et al. Semanticposs: a point cloud dataset with large quantity of dynamic instances[C].2020 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2020: 687-693.
|
29 |
GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.
|
30 |
ZHANG F, FANG J, WAH B, et al. Deep fusionnet for point cloud semantic segmentation[C].European Conference on Computer Vision. Springer, Cham, 2020: 644-663.
|