汽车工程 ›› 2022, Vol. 44 ›› Issue (12): 1889-1895.doi: 10.19562/j.chinasae.qcgc.2022.12.010

所属专题: 新能源汽车技术-动力电池&燃料电池2022年

• • 上一篇    下一篇

170 kW燃料电池系统引射器关键结构参数影响研究

庞子卉1,韩济泉1,陈平2,刘云梅2,冯健美1(),彭学院1   

  1. 1.西安交通大学能源与动力工程学院,西安  710049
    2.宁波绿动氢能科技研究院有限公司,宁波  315033
  • 收稿日期:2022-06-21 修回日期:2022-07-17 出版日期:2022-12-25 发布日期:2022-12-22
  • 通讯作者: 冯健美 E-mail:jmfeng@mail.xjtu.edu.cn

Research on the Influence of Key Structural Parameters of Ejectors for a 170 kW Fuel Cell System

Zihui Pang1,Jiquan Han1,Ping Chen2,Yunmei Liu2,Jianmei Feng1(),Xueyuan Peng1   

  1. 1.School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an  710049
    2.Ningbo Green Power Hydrogen Technology Research Institute Co. ,Ltd. ,Ningbo  315033
  • Received:2022-06-21 Revised:2022-07-17 Online:2022-12-25 Published:2022-12-22
  • Contact: Jianmei Feng E-mail:jmfeng@mail.xjtu.edu.cn

摘要:

采用引射器实现大功率燃料电池系统中氢气的循环利用是未来的主流方向,然而突出的问题是引射器在低功率工况下性能表现较差,难以满足覆盖宽功率范围的要求。本文针对170 kW级大功率燃料电池用引射器,建立了引射器内流动三维数值模拟模型,分析了在宽工况下引射器关键结构参数,即喷嘴出口直径Dt和等容混合室直径Dm对引射性能的影响规律,进而探讨了适用宽功率工况的引射器最佳结构参数组合。结果表明:选用较小的Dm能够形成较大的流动压差,防止二次流倒流,提升引射器低功率工况下的性能。当Dm/Dt在2.5~3.0时,引射器性能最佳,覆盖功率范围由70~170 kW拓宽至40~170 kW,引射器适应的功率范围拓宽近43%。研究结果为170 kW以上大功率燃料电池系统用引射器设计提供了重要参考。

关键词: 引射器, 大功率燃料电池, 宽运行工况, 数值模拟

Abstract:

Hydrogen re-circulation driven by ejectors in high-power fuel cell systems is promising in the future. However, the outstanding problem is that the performance of ejectors is significantly poor under low power conditions, which results in the inefficiency of the ejector working in the wide power range of fuel cell systems. In this paper, a three-dimensional numerical model is established for the ejector used in a 170 kW fuel cell system. The influence of two key geometric parameters including throat diameter of the primary nozzle (Dt) and mixing chamber diameter (Dm) is analyzed under a wide range of working conditions. Moreover, the optimal combination of geometric parameters applicable for a wide power range is discussed. The results show that a large pressure difference is generated in the ejector due to a small Dm, thereby preventing the backflow of the secondary flow. Hence the performance of the ejector can be improved under low power conditions. Furthermore, the best performance is obtained when Dm / Dt is 2.5~3.0, which leads to an increase in the power range from 70~170 kW to 40~70 kW (i.e. an increase of nearly 43%). The research results provide an important reference for the design of ejectors used in fuel cell systems with power above 170 kW.

Key words: ejector, high power fuel cell, wide operating conditions, numerical simulation