1 |
王海, 李洋, 蔡英凤, 等. 基于激光雷达的3D实时车辆跟踪[J]. 汽车工程, 2021, 43(7): 1013-1021.
|
|
WANG Hai, LI Yang, CAI Yingfeng, et al. 3D real⁃time vehicle tracking based on lidar[J]. Automotive Engineering, 2021, 43(7): 1013-1021.
|
2 |
娄新雨, 王海, 蔡英凤, 等. 采用64线激光雷达的实时道路障碍物检测与分类算法的研究[J]. 汽车工程, 2019, 41(7): 779-784.
|
|
LOU Xinyu, WANG Hai, CAI Yingfeng, et al. A research on an algorithm for real-time detection and classification of road obstacle by using 64-line lidar[J]. Automotive Engineering, 2019, 41(7): 779-784.
|
3 |
QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660.
|
4 |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30.
|
5 |
SHI S, WANG X, LI H. PointrCNN: 3D object proposal generation and detection from point cloud[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 770-779.
|
6 |
ZHANG Y, HU Q, XU G, et al. Not all points are equal: learning highly efficient point-based detectors for 3D lidar point clouds[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 18953-18962.
|
7 |
龚章鹏, 王国业, 于是. 基于体素网络的道路场景多类目标识别算法[J]. 汽车工程, 2021, 43(4): 469-477.
|
|
GONG Zhangpeng, WANG Guoye, YU Shi. The algorithm of multi⁃category object recognition in road scene based on voxel network[J]. Automotive Engineering, 2021, 43(4): 469-477.
|
8 |
SHI S, GUO C, JIANG L, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10529-10538.
|
9 |
SHI S, JIANG L, DENG J, et al. PV-RCNN++: point-voxel feature set abstraction with local vector representation for 3D object detection[J]. International Journal of Computer Vision, 2023, 131(2): 531-551.
|
10 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
|
11 |
YIN T, ZHOU X, KRAHENBUHL P. Center-based 3D object detection and tracking[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 11784-11793.
|
12 |
GE R, DING Z, HU Y, et al. AFDet: anchor free one stage 3D object detection[M]. arXiv, 2020.
|
13 |
DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6569-6578.
|
14 |
YAN Y, MAO Y, LI B. Second: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337.
|
15 |
夏祥腾, 王大方, 曹江, 等. 基于稀疏卷积神经网络的车载激光雷达点云语义分割方法[J]. 汽车工程, 2022, 44(1): 26-35.
|
|
XIA Xiangteng, WANG Dafang, CAO Jiang, et al. Semantic segmentation method of on-board lidar point cloud based on sparse convolutional neural network[J]. Automotive Engineering, 2022, 44(1): 26-35.
|
16 |
GRAHAM B, VAN DER MAATEN L. Submanifold sparse convolutional networks[M]. arXiv, 2017.
|
17 |
CHEN Y, LIU J, ZHANG X, et al. LargekerNel 3D: scaling up kernels in 3D sparse CNNS[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 13488-13498.
|
18 |
MAO J, XUE Y, NIU M, et al. Voxel transformer for 3D object detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3164-3173.
|
19 |
ZHANG G, JUNNAN C, GAO G, et al. HedNet: a hierarchical encoder-decoder network for 3D object detection in point clouds[J]. Advances in Neural Information Processing Systems, 2024, 36.
|
20 |
LIU J J, HOU Q, CHENG M M, et al. Improving convolutional networks with self-calibrated convolutions[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10096-10105.
|
21 |
CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11621-11631.
|
22 |
WANG H, SHI C, SHI S, et al. DSVT: dynamic sparse voxel transformer with rotated sets[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 13520-13529.
|
23 |
赵东宇, 赵树恩. 基于级联 YOLOv7 的自动驾驶三维目标检测[J]. 汽车工程, 2023, 45(7): 1112-1122.
|
|
ZHAO Dongyu, ZHAO Shuen. Autonomous driving 3D object detection based on cascade YOLOv7[J]. Automotive Engineering, 2023, 45(7): 1112-1122.
|
24 |
LI Y, HOU Q, ZHENG Z, et al. Large selective kernel network for remote sensing object detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 16794-16805.
|
25 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
26 |
TEAM O D. OpenPCDet: an open-source toolbox for 3D object detection from point clouds (2020)[Z]. 2020.
|
27 |
LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[M]. arXiv, 2019.
|
28 |
ZHU B, JIANG Z, ZHOU X, et al. Class-balanced grouping and sampling for point cloud 3D object detection[M]. arXiv, 2019.
|
29 |
LANG A H, VORA S, CAESAR H, et al. Pointpillars: fast encoders for object detection from point clouds[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12697-12705.
|
30 |
CHEN Y, LIU J, ZHANG X, et al. VoxelNeXt: fully sparse VoxelNet for 3D object detection and tracking[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 21674-21683.
|
31 |
ZHOU Z, ZHAO X, WANG Y, et al. CenterFormer: center-based transformer for 3D object detection[M]//AVIDAN S, BROSTOW G, CISSÉ M, et al. Computer Vision-ECCV 2022: Vol. 13698. Cham: Springer Nature Switzerland, 2022: 496-513.
|
32 |
SHI G, LI R, MA C. PillarNet: real-time and high-performance pillar-based 3D object detection[M]//AVIDAN S, BROSTOW G, CISSÉ M, et al. Computer Vision-ECCV 2022: Vol. 13670. Cham: Springer Nature Switzerland, 2022: 35-52.
|
33 |
ERABATI G K, ARAUJO H. Li3detr: a lidar based 3D detection transformer[C]. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023: 4250-4259.
|
34 |
LI Y, CHEN Y, QI X, et al. Unifying voxel-based representation with transformer for 3D object detection[J]. Advances in Neural Information Processing Systems, 2022, 35: 18442-18455.
|
35 |
BAI X, HU Z, ZHU X, et al. Transfusion: robust lidar-camera fusion for 3D object detection with transformers[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 1090-1099.
|